These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Photo-enhanced dehydrogenation of formic acid on Pd-based hybrid plasmonic nanostructures. Zhu J; Dai J; Xu Y; Liu X; Wang Z; Liu H; Li G Nanoscale Adv; 2023 Dec; 5(24):6819-6829. PubMed ID: 38059022 [TBL] [Abstract][Full Text] [Related]
28. Tunable electron and hole injection channels at plasmonic Al-TiO Ma J; Zhang X; Gao S Nanoscale; 2021 Sep; 13(33):14073-14080. PubMed ID: 34477688 [TBL] [Abstract][Full Text] [Related]
29. Coexistence of Different Charge-Transfer Mechanisms in the Hot-Carrier Dynamics of Hybrid Plasmonic Nanomaterials. Zhang J; Guan M; Lischner J; Meng S; Prezhdo OV Nano Lett; 2019 May; 19(5):3187-3193. PubMed ID: 30995064 [TBL] [Abstract][Full Text] [Related]
30. Plasmonic Coupling Architectures for Enhanced Photocatalysis. Liu D; Xue C Adv Mater; 2021 Nov; 33(46):e2005738. PubMed ID: 33891777 [TBL] [Abstract][Full Text] [Related]
31. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Baffou G; Bordacchini I; Baldi A; Quidant R Light Sci Appl; 2020; 9():108. PubMed ID: 32612818 [TBL] [Abstract][Full Text] [Related]
32. Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts. Chavez S; Rao VG; Linic S Faraday Discuss; 2019 May; 214():441-453. PubMed ID: 30801580 [TBL] [Abstract][Full Text] [Related]
33. The role of interfacial charge transfer-type interactions in the decay of plasmon excitations in metal nanoparticles. Aruda KO; Tagliazucchi M; Sweeney CM; Hannah DC; Weiss EA Phys Chem Chem Phys; 2013 May; 15(20):7441-9. PubMed ID: 23604217 [TBL] [Abstract][Full Text] [Related]
34. Plasmonics of 2D Nanomaterials: Properties and Applications. Li Y; Li Z; Chi C; Shan H; Zheng L; Fang Z Adv Sci (Weinh); 2017 Aug; 4(8):1600430. PubMed ID: 28852608 [TBL] [Abstract][Full Text] [Related]
35. Influence of molecular structure on the coupling strength to a plasmonic nanoparticle and hot carrier generation. Zaier R; Bancerek M; Kluczyk-Korch K; Antosiewicz TJ Nanoscale; 2024 Jun; 16(25):12163-12173. PubMed ID: 38835327 [TBL] [Abstract][Full Text] [Related]
36. Plasmonic hot electron transport drives nano-localized chemistry. Cortés E; Xie W; Cambiasso J; Jermyn AS; Sundararaman R; Narang P; Schlücker S; Maier SA Nat Commun; 2017 Mar; 8():14880. PubMed ID: 28348402 [TBL] [Abstract][Full Text] [Related]
37. Probing Spatial Energy Flow in Plasmonic Catalysts from Charge Excitation to Heating: Nonhomogeneous Energy Distribution as a Fundamental Feature of Plasmonic Chemistry. Elias RC; Yan B; Linic S J Am Chem Soc; 2024 Oct; 146(43):29656-29663. PubMed ID: 39413765 [TBL] [Abstract][Full Text] [Related]
38. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures. Wilson AJ; Jain PK Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334 [TBL] [Abstract][Full Text] [Related]
39. Controlling Plasmonic Catalysis via Strong Coupling with Electromagnetic Resonators. Fojt J; Erhart P; Schäfer C Nano Lett; 2024 Sep; 24(38):11913-11920. PubMed ID: 39264279 [TBL] [Abstract][Full Text] [Related]
40. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals. Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]