These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33398758)

  • 1. Experimental study on single-mode microwave-induced tungsten wire discharge for NO conversion in NO/N
    Tian S; Deng W; Su Y
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):19094-19106. PubMed ID: 33398758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects Induced by Microwave Field upon Tungsten Wires of Different Diameters.
    Mogildea M; Mogildea G; Craciun V; Zgura SI
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Assessment of Carbon Dioxide Dissociation Using a Single-Mode Microwave Plasma Generator.
    Mogildea G; Mogildea M; Popa C; Chiritoi G
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32231145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tungsten-needle intensifies microwave-sustained plasma accelerating direct H
    Zhang B; Song Z; Pang Y; Zhang X; Zhang J; Mao Y; Zhao X; Sun J; Wang W
    J Hazard Mater; 2024 Oct; 478():135487. PubMed ID: 39141947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of dilute nitrous oxide (N
    Fan X; Kang S; Li J; Zhu T
    RSC Adv; 2018 Jul; 8(47):26998-27007. PubMed ID: 35541041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Study of Coaxial Cylinder Dielectric Barrier Discharge in Ar/NH3 Mixtures under the Atmosphere-Pressure.
    Li YQ; Bu DC; Di LB; Zhang XL; Liu ZS; Li XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):765-71. PubMed ID: 26117894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of NO2 reduction in N2/Ar and O2/Ar mixtures by pulsed corona discharge.
    Zhu X; Zheng C; Gao X; Shen X; Wang Z; Luo Z; Cen K
    J Environ Sci (China); 2014 Nov; 26(11):2249-56. PubMed ID: 25458679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A
    J Hazard Mater; 2011 Feb; 186(1):820-6. PubMed ID: 21146292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Investigation on the Spectral Characteristics of a Plasma Jet in Atmospheric Argon Glow Discharge].
    Li XC; Zhang CY; Li JY; Bao WT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3305-9. PubMed ID: 26964199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave plasma conversion of volatile organic compounds.
    Ko Y; Yang G; Chang DP; Kennedy IM
    J Air Waste Manag Assoc; 2003 May; 53(5):580-5. PubMed ID: 12774991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Method for Tungsten Oxide Nanopowder Deposition on Carbon-Fiber-Reinforced Polymer Composites for X-ray Attenuation.
    Mogildea M; Mogildea G; Zgura SI; Craciun D; Mihăilescu N; Prepelita P; Mihai L; Bazavan MC; Bercu V; Gebac LC; Maier R; Vasile BS; Craciun V
    Nanomaterials (Basel); 2023 Dec; 13(23):. PubMed ID: 38063767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of a new carbon tetrachloride destruction system based on a microwave plasma torch operating at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A; Rodriguez JM
    J Hazard Mater; 2007 Sep; 148(1-2):419-27. PubMed ID: 17408853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enrichment of heavy metals from spent printed circuit boards by microwave pyrolysis.
    Peng Z; Wang J; Zhang X; Yan J; Shang W; Yu J; Zhu G; Rao M; Li G; Jiang T
    Waste Manag; 2022 May; 145():112-120. PubMed ID: 35537320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and electrical properties of nanoparticulate tungsten oxide prepared by microwave plasma synthesis.
    Sagmeister M; Postl M; Brossmann U; List EJ; Klug A; Letofsky-Papst I; Szabó DV; Würschum R
    J Phys Condens Matter; 2011 Aug; 23(33):334206. PubMed ID: 21813964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environment impact and bioenergy analysis on the microwave pyrolysis of WAS from food industry: Comparison of CO
    Mong GR; Liew CS; Chong WWF; Mohd Nor SA; Ng JH; Idris R; Chiong MC; Lim JW; Zakaria ZA; Woon KS
    J Environ Manage; 2022 Oct; 319():115665. PubMed ID: 35842993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdischarge in Flame as a Source-in-Source for Boosted Excitation of Optical Emission of Chromium.
    Li P; Hu J; Zhang M; He L; Li K; Hou X; Jiang X
    Anal Chem; 2022 May; 94(21):7683-7691. PubMed ID: 35549155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-gas reactions of complex oxides inside an environmental high-resolution transmission electron microscope.
    Sayagués MJ; Krumeich F; Hutchison JL
    Micron; 2001 Jul; 32(5):457-71. PubMed ID: 11163720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen Production from Ethanol Reforming by a Microwave Discharge Using Air as a Working Gas.
    Guo W; Zheng X; Qin Z; Guo Q; Liu L
    ACS Omega; 2021 Dec; 6(49):33533-33541. PubMed ID: 34926902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of microwave-induced plasmas in automotive exhaust gas mixtures using pulsed microwave energy.
    Destefani CA; Siores E; Murphy AB
    J Microw Power Electromagn Energy; 2003; 38(2):95-101. PubMed ID: 15007864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH
    Truscott BS; Kelly MW; Potter KJ; Ashfold MN; Mankelevich YA
    J Phys Chem A; 2016 Nov; 120(43):8537-8549. PubMed ID: 27718565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.