These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33398766)

  • 1. Improvement of nitrogen removal with iron scraps in floating treatment wetlands.
    Qin S; Zhang X; He S; Huang J
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17878-17890. PubMed ID: 33398766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on nitrogen removal and functional genes response between surface flow constructed wetland and floating treatment wetland planted with Iris pseudacorus.
    Zhang X; Zha L; Jiang P; Wang X; Lu K; He S; Huang J; Zhou W
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23696-23706. PubMed ID: 31203550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological iron nitrogen cycle in ecological floating bed: Nitrogen removal improvement and nitrous oxide emission reduction.
    Sun S; Gu X; Zhang M; Tang L; He S; Huang J
    Environ Pollut; 2021 Jan; 268(Pt A):115842. PubMed ID: 33120338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous denitrification and iron-phosphorus precipitation driven by plant biomass coupled with iron scraps in subsurface flow constructed wetlands.
    Gu X; Peng Y; Sun S; He S
    J Environ Manage; 2022 Nov; 322():116104. PubMed ID: 36055103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting the denitrification efficiency of iron-based constructed wetlands in-situ via plant biomass-derived biochar: Intensified iron redox cycle and microbial responses.
    Fan Y; Sun S; Gu X; Zhang M; Peng Y; Yan P; He S
    Water Res; 2024 Apr; 253():121285. PubMed ID: 38354664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron scraps enhance simultaneous nitrogen and phosphorus removal in subsurface flow constructed wetlands.
    Ma Y; Dai W; Zheng P; Zheng X; He S; Zhao M
    J Hazard Mater; 2020 Aug; 395():122612. PubMed ID: 32361175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The performance and mechanism of iron-modified aluminum sludge substrate tidal flow constructed wetlands for simultaneous nitrogen and phosphorus removal in the effluent of wastewater treatment plants.
    Zhou M; Cao J; Lu Y; Zhu L; Li C; Wang Y; Hao L; Luo J; Ren H
    Sci Total Environ; 2022 Nov; 847():157569. PubMed ID: 35882329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycled utilization of Iris pseudacorus in constructed wetlands: Litters self-consumption and nitrogen removal improvement.
    Gu X; Chen D; Wu F; He S; Huang J
    Chemosphere; 2021 Jan; 262():127863. PubMed ID: 32768758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron scraps packing rapidly enhances nitrogen removal in an aerobic sludge system and the mechanism.
    Yu X; Chen H; Liu Y; Yu L; Wang K; Xue G
    Sci Total Environ; 2023 Jan; 856(Pt 1):159081. PubMed ID: 36179843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the effects of wetland plants on nitrogen removal pathways in constructed wetlands with low C/N ratio wastewater: Contribution of partial denitrification-anammox.
    Yao D; Dai N; Hu X; Cheng C; Xie H; Hu Z; Liang S; Zhang J
    Water Res; 2023 Sep; 243():120277. PubMed ID: 37441899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Treatment Effect of Corncob and Rice Straw Enhanced Subsurface Flow Constructed Wetland on Low C/N Ratio Wastewater].
    Hu ML; Hao QJ; Ma RZ; Chen KQ; Luo SX; Jiang CS
    Huan Jing Ke Xue; 2022 Aug; 43(8):4136-4145. PubMed ID: 35971711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of floating treatment wetland coverage ratio and operating parameters on nitrogen removal: toward design optimization.
    Abi Hanna R; Borne KE; Andrès Y; Gerente C
    Water Sci Technol; 2024 Mar; 89(6):1466-1481. PubMed ID: 38557712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced nitrogen removal via iron‑carbon micro-electrolysis in surface flow constructed wetlands: Selecting activated carbon or biochar?
    Cui X; Zhang M; Ding Y; Sun S; He S; Yan P
    Sci Total Environ; 2022 Apr; 815():152800. PubMed ID: 34982986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addition of iron materials for improving the removal efficiencies of multiple contaminants from wastewater with a low C/N ratio in constructed wetlands at low temperatures.
    Zhao Z; Xu C; Zhang X; Song X
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11988-11997. PubMed ID: 30827018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stormwater nitrogen removal performance of a floating treatment wetland.
    Borne KE; Tanner CC; Fassman-Beck EA
    Water Sci Technol; 2013; 68(7):1657-64. PubMed ID: 24135117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community structure analyses and cultivable denitrifier isolation of Myriophyllum aquaticum constructed wetland under low C/N ratio.
    Zuo J; Xu L; Guo J; Xu S; Ma S; Jiang C; Yang D; Wang D; Zhuang X
    J Environ Sci (China); 2023 May; 127():30-41. PubMed ID: 36522062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microelectrolysis-integrated constructed wetland with sponge iron filler to simultaneously enhance nitrogen and phosphorus removal.
    Hou X; Chu L; Wang Y; Song X; Liu Y; Li D; Zhao X
    Bioresour Technol; 2023 Sep; 384():129270. PubMed ID: 37290705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of saturated zone depth and vegetation on the performance of vertical flow-constructed wetland with continuous feeding.
    Liu G; She Z; Gao M; Liang J; Jin C; Guo L; Zhao Y
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33286-33297. PubMed ID: 30259318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixotrophic denitrification improvement in ecological floating bed: Interaction between iron scraps and plant biomass.
    Peng Y; Gu X; Yan P; Sun S; Zhang M; Tang L; He S
    Sci Total Environ; 2023 Feb; 861():160718. PubMed ID: 36481157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response mechanism of different electron donors for treating secondary effluent in ecological floating bed.
    Sun S; Gu X; Zhang M; Tang L; He S
    Bioresour Technol; 2021 Jul; 332():125083. PubMed ID: 33826983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.