These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33398844)

  • 61. Flexible and extendible neural stimulation/recording device based on cooperative multi-chip CMOS LSI architecture.
    Tokuda T; Pan YL; Uehara A; Kagawa K; Ohta J; Nunoshita M
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4322-5. PubMed ID: 17271261
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A New Smart CMOS Image Sensor with On-Chip Neuro-Fuzzy Bleeding Detection System for Wireless Capsule Endoscopy.
    Aliparast P
    J Med Signals Sens; 2020; 10(4):249-259. PubMed ID: 33575197
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
    Kim TI; McCall JG; Jung YH; Huang X; Siuda ER; Li Y; Song J; Song YM; Pao HA; Kim RH; Lu C; Lee SD; Song IS; Shin G; Al-Hasani R; Kim S; Tan MP; Huang Y; Omenetto FG; Rogers JA; Bruchas MR
    Science; 2013 Apr; 340(6129):211-6. PubMed ID: 23580530
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fully Integrated Light-Sensing Stimulator Design for Subretinal Implants.
    Kang H; Abbasi WH; Kim SW; Kim J
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696016
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Wireless opto-electro neural interface for experiments with small freely behaving animals.
    Jia Y; Khan W; Lee B; Fan B; Madi F; Weber A; Li W; Ghovanloo M
    J Neural Eng; 2018 Aug; 15(4):046032. PubMed ID: 29799437
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High Density, Double-Sided, Flexible Optoelectronic Neural Probes With Embedded μLEDs.
    Reddy JW; Kimukin I; Stewart LT; Ahmed Z; Barth AL; Towe E; Chamanzar M
    Front Neurosci; 2019; 13():745. PubMed ID: 31456654
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Emerging Optoelectronic Devices Based on Microscale LEDs and Their Use as Implantable Biomedical Applications.
    Zhang H; Peng Y; Zhang N; Yang J; Wang Y; Ding H
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888886
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability.
    Rashidi A; Laursen K; Hosseini S; Huynh HA; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446
    [TBL] [Abstract][Full Text] [Related]  

  • 70. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.
    Tokuda T; Takahashi M; Uejima K; Masuda K; Kawamura T; Ohta Y; Motoyama M; Noda T; Sasagawa K; Okitsu T; Takeuchi S; Ohta J
    Biomed Opt Express; 2014 Nov; 5(11):3859-70. PubMed ID: 25426316
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.
    Takeda Y; Hayasaka K; Shiwaku R; Yokosawa K; Shiba T; Mamada M; Kumaki D; Fukuda K; Tokito S
    Sci Rep; 2016 May; 6():25714. PubMed ID: 27157914
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector.
    Lee MJ; Youn JS; Park KY; Choi WY
    Opt Express; 2014 Feb; 22(3):2511-8. PubMed ID: 24663543
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An Integrated 2D Ultrasound Phased Array Transmitter in CMOS With Pixel Pitch-Matched Beamforming.
    Costa T; Shi C; Tien K; Elloian J; Cardoso FA; Shepard KL
    IEEE Trans Biomed Circuits Syst; 2021 Aug; 15(4):731-742. PubMed ID: 34260357
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multiscale simulation analysis of passive and active micro/nanoelectrodes for CMOS-based
    Leva F; Palestri P; Selmi L
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210013. PubMed ID: 35658681
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Issues of nanoelectronics: a possible roadmap.
    Wang KL
    J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 78. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping.
    Lee JM; Lin D; Kim HR; Pyo YW; Hong G; Lieber CM; Park HG
    Nano Lett; 2021 Apr; 21(7):3184-3190. PubMed ID: 33734716
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chip-Scale Coils for Millimeter-Sized Bio-Implants.
    Feng P; Yeon P; Cheng Y; Ghovanloo M; Constandinou TG
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1088-1099. PubMed ID: 30040662
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultra-miniature wireless temperature sensor for thermal medicine applications.
    Khairi A; Hung SC; Paramesh J; Fedder G; Rabin Y
    Proc SPIE Int Soc Opt Eng; 2011 Jan; 7901():. PubMed ID: 28989222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.