These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33399459)

  • 1. Lithium Dicyclohexylamide in Transition-Metal-Free Fischer-Tropsch Chemistry.
    Xu M; Qu ZW; Grimme S; Stephan DW
    J Am Chem Soc; 2021 Jan; 143(2):634-638. PubMed ID: 33399459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy-Metal-Free Fischer-Tropsch Type Reaction: Sequential Homologation of Alkylborane Using a Combination of CO and Hydrides as Methylene Source.
    Phanopoulos A; Pal S; Kawakami T; Nozaki K
    J Am Chem Soc; 2020 Aug; 142(33):14064-14068. PubMed ID: 32787254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of electrophilic species in the Fischer-Tropsch reaction.
    Maitlis PM; Zanotti V
    Chem Commun (Camb); 2009 Apr; (13):1619-34. PubMed ID: 19294244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Chain Growth by Sequential Reactions of CO and CO
    Kong RY; Crimmin MR
    J Am Chem Soc; 2018 Oct; 140(42):13614-13617. PubMed ID: 30351139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and microkinetics of the Fischer-Tropsch reaction.
    van Santen RA; Markvoort AJ; Filot IA; Ghouri MM; Hensen EJ
    Phys Chem Chem Phys; 2013 Oct; 15(40):17038-63. PubMed ID: 24030478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions of aluminium(i) with transition metal carbonyls: scope, mechanism and selectivity of CO homologation.
    Kong RY; Batuecas M; Crimmin MR
    Chem Sci; 2021 Nov; 12(44):14845-14854. PubMed ID: 34820100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-Carbon Bond Formation from Carbon Monoxide and Hydride: The Role of Metal Formyl Intermediates.
    Parr JM; Crimmin MR
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202219203. PubMed ID: 36795352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C-C bond formation.
    Dzik WI; Zhang XP; de Bruin B
    Inorg Chem; 2011 Oct; 50(20):9896-903. PubMed ID: 21520926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer-Tropsch environment.
    Wolf M; Kotzé H; Fischer N; Claeys M
    Faraday Discuss; 2017 Apr; 197():243-268. PubMed ID: 28198896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of Structure Sensitivity in the Fischer-Tropsch Reaction on Model Cobalt Nanoparticles by Time-Resolved Chemical Transient Kinetics.
    Ralston WT; Melaet G; Saephan T; Somorjai GA
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7415-7419. PubMed ID: 28543941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer-Tropsch Catalyst.
    Chen W; Zijlstra B; Filot IAW; Pestman R; Hensen EJM
    ChemCatChem; 2018 Jan; 10(1):136-140. PubMed ID: 29399207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Monoxide in Main-Group Chemistry.
    Fujimori S; Inoue S
    J Am Chem Soc; 2022 Feb; 144(5):2034-2050. PubMed ID: 35068141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial computational chemistry approach for materials design: applications in deNOx catalysis, Fischer-Tropsch synthesis, lanthanoid complex, and lithium ion secondary battery.
    Koyama M; Tsuboi H; Endou A; Takaba H; Kubo M; Del Carpio CA; Miyamoto A
    Comb Chem High Throughput Screen; 2007 Feb; 10(2):99-110. PubMed ID: 17305485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst nano-particle size dependence of the Fischer-Tropsch reaction.
    van Santen RA; Markvoor AJ
    Faraday Discuss; 2013; 162():267-79. PubMed ID: 24015588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic role of water on the rate and selectivity of Fischer-Tropsch synthesis on ruthenium catalysts.
    Hibbitts DD; Loveless BT; Neurock M; Iglesia E
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12273-8. PubMed ID: 24123803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic Fischer-Tropsch-Type Reactions.
    Hu Y; Lee CC; Grosch M; Solomon JB; Weigand W; Ribbe MW
    Chem Rev; 2023 May; 123(9):5755-5797. PubMed ID: 36542730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical and economic lithiations of functionalized arenes and heteroarenes using Cy
    Becker MR; Ganiek MA; Knochel P
    Chem Sci; 2015 Nov; 6(11):6649-6653. PubMed ID: 29435214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.
    Whited MT; Grubbs RH
    Acc Chem Res; 2009 Oct; 42(10):1607-16. PubMed ID: 19624162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour.
    de Smit E; Weckhuysen BM
    Chem Soc Rev; 2008 Dec; 37(12):2758-81. PubMed ID: 19020686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer-Tropsch Synthesis.
    Chen W; Filot IAW; Pestman R; Hensen EJM
    ACS Catal; 2017 Dec; 7(12):8061-8071. PubMed ID: 29226010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.