These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Estimation of Source-Filter Interaction Regions Based on Electroglottography. Palaparthi A; Maxfield L; Titze IR J Voice; 2019 May; 33(3):269-276. PubMed ID: 29277351 [TBL] [Abstract][Full Text] [Related]
6. Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production. Jiang W; Zheng X; Xue Q Front Bioeng Biotechnol; 2017; 5():7. PubMed ID: 28243588 [TBL] [Abstract][Full Text] [Related]
7. What can vortices tell us about vocal fold vibration and voice production. Khosla S; Murugappan S; Gutmark E Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068 [TBL] [Abstract][Full Text] [Related]
8. Comparison of one-dimensional and three-dimensional glottal flow models in left-right asymmetric vocal fold conditions. Yoshinaga T; Zhang Z; Iida A J Acoust Soc Am; 2022 Nov; 152(5):2557. PubMed ID: 36456298 [TBL] [Abstract][Full Text] [Related]
9. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. Zhang Z J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022 [TBL] [Abstract][Full Text] [Related]
10. Flow-structure-acoustic interaction in a human voice model. Becker S; Kniesburges S; Müller S; Delgado A; Link G; Kaltenbacher M; Döllinger M J Acoust Soc Am; 2009 Mar; 125(3):1351-61. PubMed ID: 19275292 [TBL] [Abstract][Full Text] [Related]
11. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Zheng X; Bielamowicz S; Luo H; Mittal R Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730 [TBL] [Abstract][Full Text] [Related]
12. Integrative Insights into the Myoelastic-Aerodynamic Theory and Acoustics of Phonation. Scientific Tribute to Donald G. Miller. Švec JG; Schutte HK; Chen CJ; Titze IR J Voice; 2023 May; 37(3):305-313. PubMed ID: 33744068 [TBL] [Abstract][Full Text] [Related]
14. Fluid-structure-acoustic interactions in an ex vivo porcine phonation model. Semmler M; Berry DA; Schützenberger A; Döllinger M J Acoust Soc Am; 2021 Mar; 149(3):1657. PubMed ID: 33765793 [TBL] [Abstract][Full Text] [Related]
15. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production. Zhang Z J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666 [TBL] [Abstract][Full Text] [Related]
16. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method. Luo H; Mittal R; Bielamowicz SA J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046 [TBL] [Abstract][Full Text] [Related]
17. Influence of acoustic loading on an effective single mass model of the vocal folds. Zañartu M; Mongeau L; Wodicka GR J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533 [TBL] [Abstract][Full Text] [Related]
18. On the role of glottis-interior sources in the production of voiced sound. Howe MS; McGowan RS J Acoust Soc Am; 2012 Feb; 131(2):1391-400. PubMed ID: 22352512 [TBL] [Abstract][Full Text] [Related]
19. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model. Zhang Z J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586 [TBL] [Abstract][Full Text] [Related]
20. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling. Kaburagi T J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]