These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 33399917)
1. Hyperintense areas in the intraorbital optic nerve evaluated by T2-weighted magnetic resonance imaging: a glymphatic pathway? Tsutsumi S; Ono H; Ishii H Surg Radiol Anat; 2021 Aug; 43(8):1273-1278. PubMed ID: 33399917 [TBL] [Abstract][Full Text] [Related]
2. Hyperintense areas in the cisternal segments of the cranial nerves: a magnetic resonance imaging study. Tsutsumi S; Ono H; Ishii H Surg Radiol Anat; 2022 Apr; 44(4):503-509. PubMed ID: 35195771 [TBL] [Abstract][Full Text] [Related]
3. Meckel Cave: An Anatomical Study Using Magnetic Resonance Imaging. Tsutsumi S; Ono H; Ishii H J Comput Assist Tomogr; 2021 Sep-Oct 01; 45(5):743-748. PubMed ID: 34270483 [TBL] [Abstract][Full Text] [Related]
4. High resolution magnetic resonance imaging of neurovascular orbital anatomy. Ettl A; Kramer J; Daxer A; Koornneef L Ophthalmology; 1997 May; 104(5):869-77. PubMed ID: 9160037 [TBL] [Abstract][Full Text] [Related]
5. Visualization of the periventricular Virchow-Robin spaces with ependymal openings. Tsutsumi S; Ono H; Ishii H; Yasumoto Y Childs Nerv Syst; 2018 Aug; 34(8):1529-1533. PubMed ID: 29651538 [TBL] [Abstract][Full Text] [Related]
6. Enhancement and demyelination of the intraorbital optic nerve. Fat suppression magnetic resonance imaging. Guy J; Mao J; Bidgood WD; Mancuso A; Quisling RG Ophthalmology; 1992 May; 99(5):713-9. PubMed ID: 1594216 [TBL] [Abstract][Full Text] [Related]
7. Trochlear cistern of the cavernous sinus: an anatomical study using magnetic resonance imaging. Tsutsumi S; Ono H; Ishii H Surg Radiol Anat; 2021 Aug; 43(8):1279-1284. PubMed ID: 33386456 [TBL] [Abstract][Full Text] [Related]
8. Visualization of the supraorbital notch/foramen using magnetic resonance imaging. Tsutsumi S; Ono H; Ishii H; Yasumoto Y J Clin Neurosci; 2019 Apr; 62():212-215. PubMed ID: 30655238 [TBL] [Abstract][Full Text] [Related]
9. Central retinal artery delineation using magnetic resonance imaging. Tsutsumi S; Ono H; Ishii H Surg Radiol Anat; 2022 May; 44(5):727-732. PubMed ID: 35499642 [TBL] [Abstract][Full Text] [Related]
10. Subependymal hyperintense layer on CISS sequence: An MRI study. Tsutsumi S; Ono H; Ishii H Childs Nerv Syst; 2021 Jan; 37(1):147-152. PubMed ID: 32504169 [TBL] [Abstract][Full Text] [Related]
11. Reliability of magnetic resonance imaging for the detection of hypopituitarism in children with optic nerve hypoplasia. Ramakrishnaiah RH; Shelton JB; Glasier CM; Phillips PH Ophthalmology; 2014 Jan; 121(1):387-391. PubMed ID: 23972277 [TBL] [Abstract][Full Text] [Related]
12. Clinical and Magnetic Resonance Imaging Characteristics of Postfenestration Optic Nerve Sheath Pseudomeningoceles. Rafailov L; Rubinstein D; Wladis EJ; Mirani N; Frohman LP; Langer PD; Turbin RE Ophthalmic Plast Reconstr Surg; 2019; 35(2):159-164. PubMed ID: 30134388 [TBL] [Abstract][Full Text] [Related]
13. Accurate course and relationships of the intraorbital part of the ophthalmic artery in the sagittal plane. Erdogmus S; Govsa F Minim Invasive Neurosurg; 2007 Aug; 50(4):202-8. PubMed ID: 17948178 [TBL] [Abstract][Full Text] [Related]
14. [Orbital vasculonervous network and orbital surgical compartments by high field magnetic resonance]. Hernández González LC; Suárez Suárez E; Dos Santos Bernardo V; Junceda Moreno J; Recio Rodríguez M; Martínez De Vega V; Viaño López J Arch Soc Esp Oftalmol; 2003 Oct; 78(10):549-54. PubMed ID: 14569503 [TBL] [Abstract][Full Text] [Related]
15. Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Kramer LA; Sargsyan AE; Hasan KM; Polk JD; Hamilton DR Radiology; 2012 Jun; 263(3):819-27. PubMed ID: 22416248 [TBL] [Abstract][Full Text] [Related]
16. High-resolution magnetic resonance imaging of the intraorbital optic nerve and subarachnoid space in patients with papilledema and optic atrophy. Mashima Y; Oshitari K; Imamura Y; Momoshima S; Shiga H; Oguchi Y Arch Ophthalmol; 1996 Oct; 114(10):1197-203. PubMed ID: 8859078 [TBL] [Abstract][Full Text] [Related]
17. Prominent hyperintense areas in swollen optic pathway: An indicator of congestive glymphatic pathway? Kuroda K; Tsutsumi S; Sugiyama H; Sugiyama N; Ueno H; Ishii H Radiol Case Rep; 2022 Aug; 17(8):2863-2868. PubMed ID: 35711740 [TBL] [Abstract][Full Text] [Related]
18. Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Karim S; Clark RA; Poukens V; Demer JL Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1047-51. PubMed ID: 15037567 [TBL] [Abstract][Full Text] [Related]
19. Spectrally fat-suppressed coronal 2D TSE sequences may be more sensitive than 2D STIR for the detection of hyperintense optic nerve lesions. Faizy TD; Broocks G; Frischmuth I; Westermann C; Flottmann F; Schönfeld MH; Nawabi J; Leischner H; Kutzner D; Stellmann JP; Heesen C; Fiehler J; Gellißen S; Hanning U Eur Radiol; 2019 Nov; 29(11):6266-6274. PubMed ID: 31089849 [TBL] [Abstract][Full Text] [Related]
20. Small hyperintense hepatic lesions on T1-weighted images in patients with cirrhosis: evaluation with serial MRI and imaging features for clinical benignity. Shimizu A; Ito K; Sasaki K; Hayashida M; Tanabe M; Shimizu K; Matsunaga N Magn Reson Imaging; 2007 Dec; 25(10):1430-6. PubMed ID: 17524587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]