These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33400275)

  • 1. QcrB in Mycobacterium tuberculosis: The new drug target of antitubercular agents.
    Bahuguna A; Rawat S; Rawat DS
    Med Res Rev; 2021 Jul; 41(4):2565-2581. PubMed ID: 33400275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Energy Metabolism in
    Bald D; Villellas C; Lu P; Koul A
    mBio; 2017 Apr; 8(2):. PubMed ID: 28400527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arylvinylpiperazine Amides, a New Class of Potent Inhibitors Targeting QcrB of Mycobacterium tuberculosis.
    Foo CS; Lupien A; Kienle M; Vocat A; Benjak A; Sommer R; Lamprecht DA; Steyn AJC; Pethe K; Piton J; Altmann KH; Cole ST
    mBio; 2018 Oct; 9(5):. PubMed ID: 30301850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of 4-Amino-Thieno[2,3-
    Harrison GA; Mayer Bridwell AE; Singh M; Jayaraman K; Weiss LA; Kinsella RL; Aneke JS; Flentie K; Schene ME; Gaggioli M; Solomon SD; Wildman SA; Meyers MJ; Stallings CL
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31511370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refined homology model of cytochrome bcc complex B subunit for virtual screening of potential anti-tuberculosis agents.
    Pan Z; Wang Y; Gu X; Wang J; Cheng M
    J Biomol Struct Dyn; 2020 Oct; 38(16):4733-4745. PubMed ID: 31674290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis.
    Lee BS; Hards K; Engelhart CA; Hasenoehrl EJ; Kalia NP; Mackenzie JS; Sviriaeva E; Chong SMS; Manimekalai MSS; Koh VH; Chan J; Xu J; Alonso S; Miller MJ; Steyn AJC; Grüber G; Schnappinger D; Berney M; Cook GM; Moraski GC; Pethe K
    EMBO Mol Med; 2021 Jan; 13(1):e13207. PubMed ID: 33283973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging opportunities of exploiting mycobacterial electron transport chain pathway for drug-resistant tuberculosis drug discovery.
    Roy KK; Wani MA
    Expert Opin Drug Discov; 2020 Feb; 15(2):231-241. PubMed ID: 31774006
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploiting the synthetic lethality between terminal respiratory oxidases to kill
    Kalia NP; Hasenoehrl EJ; Ab Rahman NB; Koh VH; Ang MLT; Sajorda DR; Hards K; Grüber G; Alonso S; Cook GM; Berney M; Pethe K
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7426-7431. PubMed ID: 28652330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance.
    Bown L; Srivastava SK; Piercey BM; McIsaac CK; Tahlan K
    J Membr Biol; 2018 Feb; 251(1):105-117. PubMed ID: 29098330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of
    Zhou S; Wang W; Zhou X; Zhang Y; Lai Y; Tang Y; Xu J; Li D; Lin J; Yang X; Ran T; Chen H; Guddat LW; Wang Q; Gao Y; Rao Z; Gong H
    Elife; 2021 Nov; 10():. PubMed ID: 34819223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the cytochrome bc
    Wani MA; Dhaked DK
    Mol Divers; 2022 Oct; 26(5):2949-2965. PubMed ID: 34762234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QcrB inhibition as a potential approach for the treatment of tuberculosis: A review of recent developments, patents, and future directions.
    Imran M; Abida ; Alotaibi NM; Thabet HK; Alruwaili JA; Asdaq SMB; Eltaib L; Alshehri A; Alsaiari AA; Almehmadi M; Alshammari ABH; Alshammari AM
    J Infect Public Health; 2023 Jun; 16(6):928-937. PubMed ID: 37086552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the cytochrome oxidases for drug development in mycobacteria.
    Lee BS; Sviriaeva E; Pethe K
    Prog Biophys Mol Biol; 2020 May; 152():45-54. PubMed ID: 32081616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telacebec (Q203): Is there a novel effective and safe anti-tuberculosis drug on the horizon?
    Malík I; Čižmárik J; Kováč G; Pecháčová M; Hudecova L
    Ceska Slov Farm; 2021; 70(5):164–171. PubMed ID: 34875838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effect of Q203 Combined with PBTZ169 against Mycobacterium tuberculosis.
    Nguyen TQ; Hanh BTB; Jeon S; Heo BE; Park Y; Choudhary A; Moon C; Jang J
    Antimicrob Agents Chemother; 2022 Dec; 66(12):e0044822. PubMed ID: 36321819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd.
    Lu P; Asseri AH; Kremer M; Maaskant J; Ummels R; Lill H; Bald D
    Sci Rep; 2018 Feb; 8(1):2625. PubMed ID: 29422632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase-a molecular modelling perspective.
    Tembe N; Machaba KE; Ndagi U; Kumalo HM; Mhlongo NN
    J Mol Model; 2022 Jan; 28(2):35. PubMed ID: 35022913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.