These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33400540)

  • 1. Photochemical Chemoselective Alkylation of Tryptophan-Containing Peptides.
    Laroche B; Tang X; Archer G; Di Sanza R; Melchiorre P
    Org Lett; 2021 Jan; 23(2):285-289. PubMed ID: 33400540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process.
    Tower SJ; Hetcher WJ; Myers TE; Kuehl NJ; Taylor MT
    J Am Chem Soc; 2020 May; 142(20):9112-9118. PubMed ID: 32348670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan.
    Lee JC; Cuthbertson JD; Mitchell NJ
    Org Lett; 2023 Jul; 25(29):5459-5464. PubMed ID: 37462428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-synthetic functionalization of tryptophan protected peptide sequences through indole (C-2) photocatalytic alkylation.
    Lima RN; Delgado JAC; Bernardi DI; Berlinck RGS; Kaplaneris N; Ackermann L; Paixão MW
    Chem Commun (Camb); 2021 Jun; 57(47):5758-5761. PubMed ID: 34002741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Donor-Acceptor Pyridinium Salts for Photo-Induced Electron-Transfer-Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes Using Visible Light.
    Hoopes CR; Garcia FJ; Sarkar AM; Kuehl NJ; Barkan DT; Collins NL; Meister GE; Bramhall TR; Hsu CH; Jones MD; Schirle M; Taylor MT
    J Am Chem Soc; 2022 Apr; 144(14):6227-6236. PubMed ID: 35364811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu-Catalyzed Site-Selective C(sp
    Guerrero I; Correa A
    Org Lett; 2020 Mar; 22(5):1754-1759. PubMed ID: 32052977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoselective synthesis of functional homocysteine residues in polypeptides and peptides.
    Gharakhanian EG; Deming TJ
    Chem Commun (Camb); 2016 Apr; 52(30):5336-9. PubMed ID: 27004992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoselective Peptide Modification via Photocatalytic Tryptophan β-Position Conjugation.
    Yu Y; Zhang LK; Buevich AV; Li G; Tang H; Vachal P; Colletti SL; Shi ZC
    J Am Chem Soc; 2018 Jun; 140(22):6797-6800. PubMed ID: 29762027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoredox C(2)-Arylation of Indole- and Tryptophan-Containing Biomolecules.
    da S Santos BM; Finelli FG; Spring DR
    Org Lett; 2024 May; 26(19):4065-4070. PubMed ID: 38696591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-H Olefination of Tryptophan Residues in Peptides: Control of Residue Selectivity and Peptide-Amino Acid Cross-linking.
    Terrey MJ; Holmes A; Perry CC; Cross WB
    Org Lett; 2019 Oct; 21(19):7902-7907. PubMed ID: 31524401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductant-Induced Free Radical Fluoroalkylation of Nitrogen Heterocycles and Innate Aromatic Amino Acid Residues in Peptides and Proteins.
    Rahimidashaghoul K; Klimánková I; Hubálek M; Korecký M; Chvojka M; Pokorný D; Matoušek V; Fojtík L; Kavan D; Kukačka Z; Novák P; Beier P
    Chemistry; 2019 Dec; 25(69):15779-15785. PubMed ID: 31523878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical alkylation of isocyanides with amino acid-/peptide-derived Katritzky salts via photoredox catalysis.
    Zhu ZF; Zhang MM; Liu F
    Org Biomol Chem; 2019 Feb; 17(6):1531-1534. PubMed ID: 30681112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Free Late-Stage Alkylation of Tryptophan and Tryptophan-Containing Peptides with 1,3-Dithiane Derivatives.
    Mao M; Li J; Dong K; Li RP; Chen X; Liu J; Tang S
    Org Lett; 2023 Aug; 25(31):5784-5789. PubMed ID: 37503958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the rate of reversible electron transfer in oxidized tryptophan and tyrosine containing peptides in acidic aqueous solution.
    Morozova OB; Yurkovskaya AV
    J Phys Chem B; 2015 Jan; 119(1):140-9. PubMed ID: 25489905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. π-Cation interactions as the origin of the weak absorption at 532 nm observed in tryptophan-containing polypeptides.
    Roveri OA; Braslavsky SE
    Photochem Photobiol Sci; 2012 Jun; 11(6):962-6. PubMed ID: 22273601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra and intermolecular charge effects on the reaction of the superoxide radical anion with semi-oxidized tryptophan in peptides and N-acetyl tryptophan.
    Santus R; Patterson LK; Bazin M; Mazière JC; Morlière P
    Free Radic Res; 1998 Nov; 29(5):409-19. PubMed ID: 9925033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemoselective peptidomimetic ligation using thioacid peptides and aziridine templates.
    Assem N; Natarajan A; Yudin AK
    J Am Chem Soc; 2010 Aug; 132(32):10986-7. PubMed ID: 20666404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreactivity of amino acids: tryptophan-induced photochemical events via reactive oxygen species generation.
    Igarashi N; Onoue S; Tsuda Y
    Anal Sci; 2007 Aug; 23(8):943-8. PubMed ID: 17690425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-Light-Promoted Biomimetic Reductive Functionalization of Quaternary Benzophenanthridine Alkaloids.
    Wang L; Wang X; Wang W; Liu W; Liu Y; Xie H; Reiser O; Zeng J; Cheng P
    J Nat Prod; 2021 Aug; 84(8):2390-2397. PubMed ID: 34325506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation.
    Schöneich C
    J Pharm Pharmacol; 2018 May; 70(5):655-665. PubMed ID: 28134972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.