These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33400540)

  • 41. Protein Chemical Labeling Using Biomimetic Radical Chemistry.
    Sato S; Nakamura H
    Molecules; 2019 Nov; 24(21):. PubMed ID: 31684188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Site-Selective Cu-Catalyzed Alkylation of α-Amino Acids and Peptides toward the Assembly of Quaternary Centers.
    San Segundo M; Correa A
    ChemSusChem; 2018 Nov; 11(22):3893-3898. PubMed ID: 30320455
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxidative Modification of Tryptophan-Containing Peptides.
    Petersen J; Christensen KE; Nielsen MT; Mortensen KT; Komnatnyy VV; Nielsen TE; Qvortrup K
    ACS Comb Sci; 2018 Jun; 20(6):344-349. PubMed ID: 29719155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photo-oxidation of IgG1 and Model Peptides: Detection and Analysis of Triply Oxidized His and Trp Side Chain Cleavage Products.
    Bane J; Mozziconacci O; Yi L; Wang YJ; Sreedhara A; Schöneich C
    Pharm Res; 2017 Jan; 34(1):229-242. PubMed ID: 27800571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic asymmetric synthesis of protected tryptophan regioisomers.
    Carlier PR; Lam PC; Wong DM
    J Org Chem; 2002 Aug; 67(17):6256-9. PubMed ID: 12182675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure and Function of Tryptophan-Tyrosine Dyads in Biomimetic β Hairpins.
    McCaslin TG; Pagba CV; Chi SH; Hwang HJ; Gumbart JC; Perry JW; Olivieri C; Porcelli F; Veglia G; Guo Z; McDaniel M; Barry BA
    J Phys Chem B; 2019 Apr; 123(13):2780-2791. PubMed ID: 30888824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aggregation of α- and β- caseins induced by peroxyl radicals involves secondary reactions of carbonyl compounds as well as di-tyrosine and di-tryptophan formation.
    Fuentes-Lemus E; Silva E; Barrias P; Aspee A; Escobar E; Lorentzen LG; Carroll L; Leinisch F; Davies MJ; López-Alarcón C
    Free Radic Biol Med; 2018 Aug; 124():176-188. PubMed ID: 29885785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Postsynthetic modification of peptides: chemoselective C-arylation of tryptophan residues.
    Ruiz-Rodríguez J; Albericio F; Lavilla R
    Chemistry; 2010 Jan; 16(4):1124-7. PubMed ID: 20013969
    [No Abstract]   [Full Text] [Related]  

  • 49. Postsynthetic modification of peptides via chemoselective N-alkylation of their side chains.
    Monfregola L; Leone M; Calce E; De Luca S
    Org Lett; 2012 Apr; 14(7):1664-7. PubMed ID: 22409703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tryptophan-containing peptide helices: interactions involving the indole side chain.
    Mahalakshmi R; Sengupta A; Raghothama S; Shamala N; Balaram P
    J Pept Res; 2005 Nov; 66(5):277-96. PubMed ID: 16218995
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tryptophan as a probe for acid-base equilibria in peptides.
    Marquezin CA; Hirata IY; Juliano L; Ito AS
    Biopolymers; 2003; 71(5):569-76. PubMed ID: 14635097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Asymmetric synthesis of the central tryptophan residue of stephanotic acid.
    Bentley DJ; Moody CJ
    Org Biomol Chem; 2004 Dec; 2(24):3545-7. PubMed ID: 15592611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous ultraviolet B-induced photo-oxidation of tryptophan/tyrosine and racemization of neighboring aspartyl residues in peptides.
    Cai S; Fujii N; Saito T; Fujii N
    Free Radic Biol Med; 2013 Dec; 65():1037-1046. PubMed ID: 23999504
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action.
    Chan DI; Prenner EJ; Vogel HJ
    Biochim Biophys Acta; 2006 Sep; 1758(9):1184-202. PubMed ID: 16756942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Post-synthetic modification of tryptophan containing peptides via NIS mediation.
    Gu CX; Bi QW; Gao CK; Wen J; Zhao ZG; Chen Z
    Org Biomol Chem; 2017 Apr; 15(16):3396-3400. PubMed ID: 28352912
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tryptophan oxidation in proteins exposed to thiocyanate-derived oxidants.
    Bonifay V; Barrett TJ; Pattison DI; Davies MJ; Hawkins CL; Ashby MT
    Arch Biochem Biophys; 2014 Dec; 564():1-11. PubMed ID: 25172223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Macrocyclization of Maleimide-Decorated Peptides via Late-Stage Rh(III)-Catalyzed Trp(C7) Alkenylation.
    Zhang Y; Hu S; Li Y; Wang Y; Yu T; Chen Q; Wang J; Liu H
    Org Lett; 2023 Apr; 25(14):2456-2460. PubMed ID: 36999881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light-induced tryptophan radical generation in a click modular assembly of a sensitiser-tryptophan residue.
    Sheth S; Baron A; Herrero C; Vauzeilles B; Aukauloo A; Leibl W
    Photochem Photobiol Sci; 2013 Jun; 12(6):1074-8. PubMed ID: 23558787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aromatic interactions in tryptophan-containing peptides: crystal structures of model tryptophan peptides and phenylalanine analogs.
    Sengupta A; Mahalakshmi R; Shamala N; Balaram P
    J Pept Res; 2005 Jan; 65(1):113-29. PubMed ID: 15686542
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitrosation of N-terminally blocked tryptophan and tryptophan-containing peptides by peroxynitrite.
    Peyrot F; Ducrocq C
    Chembiochem; 2007 Jan; 8(2):217-23. PubMed ID: 17183522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.