These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33400650)

  • 1. 3D Curve Creation on and Around Physical Objects With Mobile AR.
    Ye H; Kwan KC; Fu H
    IEEE Trans Vis Comput Graph; 2022 Aug; 28(8):2809-2821. PubMed ID: 33400650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion.
    Fang W; Zheng L; Deng H; Zhang H
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28475145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobile3DRecon: Real-time Monocular 3D Reconstruction on a Mobile Phone.
    Yang X; Zhou L; Jiang H; Tang Z; Wang Y; Bao H; Zhang G
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3446-3456. PubMed ID: 32956060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Augmented Reality Vision for Osteosynthesis Using a 3D Camera.
    Morita J; Ikumi A; Nakatani T; Noguchi H; Mishima H; Ishii T; Yoshii Y
    Cureus; 2024 May; 16(5):e60479. PubMed ID: 38882985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.
    Piao JC; Kim SD
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29112143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile3DScanner: An Online 3D Scanner for High-quality Object Reconstruction with a Mobile Device.
    Xiang X; Jiang H; Zhang G; Yu Y; Li C; Yang X; Chen D; Bao H
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4245-4255. PubMed ID: 34449377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing Desktop vs. Mobile Interaction for the Creation of Pervasive Augmented Reality Experiences.
    Madeira T; Marques B; Neves P; Dias P; Santos BS
    J Imaging; 2022 Mar; 8(3):. PubMed ID: 35324634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an inside-out augmented reality technique for neurosurgical navigation.
    Dho YS; Park SJ; Choi H; Kim Y; Moon HC; Kim KM; Kang H; Lee EJ; Kim MS; Kim JW; Kim YH; Kim YG; Park CK
    Neurosurg Focus; 2021 Aug; 51(2):E21. PubMed ID: 34333463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoSART: Mobile Spatial Augmented Reality for 3D Interaction With Tangible Objects.
    Cortes G; Marchand E; Brincin G; Lécuyer A
    Front Robot AI; 2018; 5():93. PubMed ID: 33500972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Tightly-Coupled Visual-Inertial Odometry with Pre-built Maps in High Latency Situations.
    Bao H; Xie W; Qian Q; Chen D; Zhai S; Wang N; Zhang G
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2212-2222. PubMed ID: 35167466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An augmented reality tool for learning spatial anatomy on mobile devices.
    Jain N; Youngblood P; Hasel M; Srivastava S
    Clin Anat; 2017 Sep; 30(6):736-741. PubMed ID: 28631297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time 3D Tracking and Reconstruction on Mobile Phones.
    Prisacariu VA; Kähler O; Murray DW; Reid ID
    IEEE Trans Vis Comput Graph; 2015 May; 21(5):557-70. PubMed ID: 26357204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LivePhantom: Retrieving Virtual World Light Data to Real Environments.
    Kolivand H; Billinghurst M; Sunar MS
    PLoS One; 2016; 11(12):e0166424. PubMed ID: 27930663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occlusion Handling for Mobile AR Applications in Indoor and Outdoor Scenarios.
    Alfakhori M; Sardi Barzallo JS; Coors V
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery.
    Lee SC; Fuerst B; Tateno K; Johnson A; Fotouhi J; Osgood G; Tombari F; Navab N
    Healthc Technol Lett; 2017 Oct; 4(5):168-173. PubMed ID: 29184659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile Augmented Reality for Adding Detailed Multimedia Content to Historical Physicalizations.
    Mossman C; Samavati FF; Etemad K; Dawson P
    IEEE Comput Graph Appl; 2023; 43(3):71-83. PubMed ID: 37015654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Range Augmented Reality with Dynamic Occlusion Rendering.
    Sizintsev M; Mithun NC; Chiu HP; Samarasekera S; Kumar R
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4236-4244. PubMed ID: 34449369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile augmented reality based indoor map for improving geo-visualization.
    Ma W; Zhang S; Huang J
    PeerJ Comput Sci; 2021; 7():e704. PubMed ID: 34604526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediated Reality: A Framework for Communication Through Tele-Puppetry.
    Casas L; Mitchell K
    Front Robot AI; 2019; 6():60. PubMed ID: 33501075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.