These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33400665)

  • 1. Navigation of a Fuzzy-Controlled Wheeled Robot Through the Combination of Expert Knowledge and Data-Driven Multiobjective Evolutionary Learning.
    Juang CF; Chou CY; Lin CT
    IEEE Trans Cybern; 2022 Aug; 52(8):7388-7401. PubMed ID: 33400665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Navigation of Three Cooperative Object-Transportation Robots Using a Multistage Evolutionary Fuzzy Control Approach.
    Juang CF; Lu CH; Huang CA
    IEEE Trans Cybern; 2022 May; 52(5):3606-3619. PubMed ID: 32915759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.
    Juang CF; Lai MG; Zeng WT
    IEEE Trans Cybern; 2015 Sep; 45(9):1731-43. PubMed ID: 25398185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiobjective Rule-Based Cooperative Continuous Ant Colony Optimized Fuzzy Systems With a Robot Control Application.
    Juang CF; Lin CH; Bui TB
    IEEE Trans Cybern; 2020 Feb; 50(2):650-663. PubMed ID: 30296249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle Swarm Optimization aided PID gait controller design for a humanoid robot.
    Kashyap AK; Parhi DR
    ISA Trans; 2021 Aug; 114():306-330. PubMed ID: 33358185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Interpretable Fuzzy System Learned Through Online Rule Generation and Multiobjective ACO With a Mobile Robot Control Application.
    Juang CF; Jeng TL; Chang YC
    IEEE Trans Cybern; 2016 Dec; 46(12):2706-2718. PubMed ID: 26513819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiobjective Evolution of Biped Robot Gaits Using Advanced Continuous Ant-Colony Optimized Recurrent Neural Networks.
    Juang CF; Yeh YT; Chia-Feng Juang ; Yen-Ting Yeh ; Juang CF; Yeh YT
    IEEE Trans Cybern; 2018 Jun; 48(6):1910-1922. PubMed ID: 28682271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Fuzzy-PID Gain Scheduling Algorithm Design for Motion Control in Differential Drive Mobile Robotic Platforms.
    Yousfi Allagui N; Salem FA; Aljuaid AM
    Comput Intell Neurosci; 2021; 2021():5542888. PubMed ID: 34707650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation.
    Yang X; Moallem M; Patel RV
    IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1214-24. PubMed ID: 16366247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.
    Sun Z; Xing R; Zhao C; Huang W
    Ultrasonics; 2007 Nov; 46(4):303-12. PubMed ID: 17540429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot navigation in cluttered 3-D environments using preference-based fuzzy behaviors.
    Shi D; Collins EG; Dunlap D
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1486-99. PubMed ID: 18179068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.
    Omrane H; Masmoudi MS; Masmoudi M
    Comput Intell Neurosci; 2016; 2016():9548482. PubMed ID: 27688748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pareto design of state feedback tracking control of a biped robot via multiobjective PSO in comparison with sigma method and genetic algorithms: modified NSGAII and MATLAB's toolbox.
    Mahmoodabadi MJ; Taherkhorsandi M; Bagheri A
    ScientificWorldJournal; 2014; 2014():303101. PubMed ID: 24616619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual Obstacles for Sensors Incapacitation in Robot Navigation: A Systematic Review of 2D Path Planning.
    Ngwenya T; Ayomoh M; Yadavalli S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Trajectory Planning Method for the Navigation of WIP Vehicles in Unknown Environments: Theory and Experiment.
    Ning Y; Yue M; Shangguan J; Zhao J
    IEEE Trans Cybern; 2023 Oct; 53(10):6317-6328. PubMed ID: 35476556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving Multimodal Robot Behavior via Many Stepping Stones with the Combinatorial Multiobjective Evolutionary Algorithm.
    Huizinga J; Clune J
    Evol Comput; 2022 Jun; 30(2):131-164. PubMed ID: 34818410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on fuzzy proportional-integral-derivative control of master-slave minimally invasive operation robot driver].
    Zhao X; Ren C; Liu H; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1346-9. PubMed ID: 25868257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning.
    Samadi Gharajeh M; Jond HB
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.