BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 3340081)

  • 21. Characterization of the isolated rat flexor digitorum brevis for the study of skeletal muscle phosphorylase kinase phosphorylation.
    Pickett-Gies CA; Carlsen RC; Anderson LJ; Angelos KL; Walsh DA
    J Biol Chem; 1987 Mar; 262(7):3227-38. PubMed ID: 3029105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A probable mechanism for tolbutamide mediated activation of glycogen phosphorylase in the isolated rat heart.
    Lampson WG; Schaffer SW
    Res Commun Chem Pathol Pharmacol; 1984 Apr; 44(1):3-13. PubMed ID: 6328600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of diltiazem and nitroglycerin on cytosolic Ca2+ concentration and on force in the bovine ophthalmic artery.
    Hiroishi G; Kobayashi S; Nishimura J; Inomata H; Kanaide H
    Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2612-23. PubMed ID: 8977475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of galanin-induced contraction in the rat myometrium.
    Niiro N; Nishimura J; Hirano K; Nakano H; Kanaide H
    Br J Pharmacol; 1998 Aug; 124(8):1623-32. PubMed ID: 9756377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMDA-receptor regulation of muscarinic-receptor stimulated inositol 1,4,5-trisphosphate production and protein kinase C activation in single cerebellar granule neurons.
    Young KW; Garro MA; Challiss RA; Nahorski SR
    J Neurochem; 2004 Jun; 89(6):1537-46. PubMed ID: 15189357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co2+, low Ca2+, and verapamil reduce mechanical activity in rat skeletal muscles.
    Kotsias BA; Muchnik S; Obejero Paz CA
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C40-6. PubMed ID: 3942207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adrenaline reactivation of muscle phosphorylase after deactivation during phasic contractile activity.
    Rennie MJ; Fell RD; Ivy JL; Holloszy JO
    Biosci Rep; 1982 May; 2(5):323-31. PubMed ID: 6284270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of phosphorylase in frog muscle as determined by contractile activity.
    Mommaerts WF; Vegh K; Homsher E
    J Gen Physiol; 1975 Nov; 66(5):657-69. PubMed ID: 1081585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool.
    Entman ML; Keslensky SS; Chu A; Van Winkle WB
    J Biol Chem; 1980 Jul; 255(13):6245-52. PubMed ID: 6446555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+-dependent hormones.
    Joseph SK; Coll KE; Thomas AP; Rubin R; Williamson JR
    J Biol Chem; 1985 Oct; 260(23):12508-15. PubMed ID: 4044600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupled diminished energy turnover and phosphorylase a formation in contracting hypothyroid rat muscle.
    Leijendekker WJ; van Hardeveld C; Kassenaar AA
    Metabolism; 1985 May; 34(5):437-41. PubMed ID: 3990559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of nitration in control of phosphorylase and glycogenolysis in mouse skeletal muscle.
    Blackwood SJ; Jude B; Mader T; Lanner JT; Katz A
    Am J Physiol Endocrinol Metab; 2021 Apr; 320(4):E691-E701. PubMed ID: 33554777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal integration of alpha 1-adrenergic responses in BC3H-1 muscle cells. Regulation of glycogen phosphorylase activity.
    Toranji S; Brown RD
    J Biol Chem; 1989 Jul; 264(20):11558-64. PubMed ID: 2545674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylase activity in needle biopsy samples--factors influencing transformation.
    Ren JM; Hultman E
    Acta Physiol Scand; 1988 May; 133(1):109-14. PubMed ID: 3227899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Interaction of skeletal muscle sarcolemma Ca2+-ATPase with blockaders of excitable membrane calcium currents].
    Gimmel'reÄ­kh NG
    Dokl Akad Nauk SSSR; 1976 JUL-AUG; 229(1):211-3. PubMed ID: 133793
    [No Abstract]   [Full Text] [Related]  

  • 36. The relation between effects of 2,4-dinitrophenol and adrenalin on muscle contraction induction and phosphorylase activation.
    El-Guindy MM; Vizioli MR; Gomes CB
    Cell Mol Biol; 1984; 30(3):223-6. PubMed ID: 6467289
    [No Abstract]   [Full Text] [Related]  

  • 37. Postmorten glycolysis in ground skeletal muscle as influenced by prerigor freezing and subsequent thawing.
    Dalrymple RH; Hamm R
    Z Lebensm Unters Forsch; 1975 Oct; 158(6):333-9. PubMed ID: 132815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decrease in force potentiation and appearance of alpha-adrenergic mediated contracture in aging rat skeletal muscle.
    Carlsen RC; Walsh DA
    Pflugers Arch; 1987 Mar; 408(3):224-30. PubMed ID: 3033599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulation of skeletal muscle phosphorylase kinase by Ca2+.
    Brostrom CO; Hunkeler FL; Krebs EG
    J Biol Chem; 1971 Apr; 246(7):1961-7. PubMed ID: 5549597
    [No Abstract]   [Full Text] [Related]  

  • 40. Effect of high pressure on the regulation of phosphorylase activity in pre-rigor rabbit muscle.
    Horgan DJ; Kuypers R
    Meat Sci; 1983 Jan; 8(1):65-77. PubMed ID: 22055407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.