BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 33401000)

  • 21. Physiological, proteomic, and metabolomic analysis provide insights into Bacillus sp.-mediated salt tolerance in wheat.
    Zhao Y; Zhang F; Mickan B; Wang D; Wang W
    Plant Cell Rep; 2022 Jan; 41(1):95-118. PubMed ID: 34546426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts.
    Zhang L; Xing D
    Photochem Photobiol Sci; 2008 Mar; 7(3):352-60. PubMed ID: 18389153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress.
    Ge P; Hao P; Cao M; Guo G; Lv D; Subburaj S; Li X; Yan X; Xiao J; Ma W; Yan Y
    Proteomics; 2013 Oct; 13(20):3046-58. PubMed ID: 23929510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-Free Quantitative Proteome Analysis Reveals the Underlying Mechanisms of Grain Nuclear Proteins Involved in Wheat Water-Deficit Response.
    Li T; Zhu D; Han Z; Zhang J; Zhang M; Yan Y
    Front Plant Sci; 2021; 12():748487. PubMed ID: 34759942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE).
    Gao L; Yan X; Li X; Guo G; Hu Y; Ma W; Yan Y
    Phytochemistry; 2011 Jul; 72(10):1180-91. PubMed ID: 21257186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic analysis reveals response of differential wheat (Triticum aestivum L.) genotypes to oxygen deficiency stress.
    Pan R; He D; Xu L; Zhou M; Li C; Wu C; Xu Y; Zhang W
    BMC Genomics; 2019 Jan; 20(1):60. PubMed ID: 30658567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves.
    Jia H; Shao M; He Y; Guan R; Chu P; Jiang H
    PLoS One; 2015; 10(12):e0144808. PubMed ID: 26691228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.
    Fu Y; Zhang H; Mandal SN; Wang C; Chen C; Ji W
    J Proteomics; 2016 Jan; 130():108-19. PubMed ID: 26381202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings.
    Yue J; Wang Y; Jiao J; Wang H
    BMC Plant Biol; 2021 Dec; 21(1):577. PubMed ID: 34872497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance.
    Xu J; Li Y; Sun J; Du L; Zhang Y; Yu Q; Liu X
    Plant Biol (Stuttg); 2013 Mar; 15(2):292-303. PubMed ID: 22963252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.).
    Cui G; Sun F; Gao X; Xie K; Zhang C; Liu S; Xi Y
    Planta; 2018 Jul; 248(1):69-87. PubMed ID: 29564630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The chloroplast proteome response to drought stress in cassava leaves.
    Chang L; Wang L; Peng C; Tong Z; Wang D; Ding G; Xiao J; Guo A; Wang X
    Plant Physiol Biochem; 2019 Sep; 142():351-362. PubMed ID: 31422174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abscisic Acid, Stress, and Ripening (
    Hamdi K; Brini F; Kharrat N; Masmoudi K; Yakoubi I
    Biomed Res Int; 2020; 2020():7876357. PubMed ID: 32076614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types.
    Dissanayake BM; Staudinger C; Munns R; Taylor NL; Millar AH
    J Proteomics; 2022 Mar; 256():104502. PubMed ID: 35093570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seed Treatment with
    Zhang S; Xu B; Gan Y
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31366159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic dissection of the similar and different responses of wheat to drought, salinity and submergence during seed germination.
    Yan M; Xue C; Xiong Y; Meng X; Li B; Shen R; Lan P
    J Proteomics; 2020 May; 220():103756. PubMed ID: 32201361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Independent and Combined Water-Deficit and High-Nitrogen Treatments on Flag Leaf Proteomes during Wheat Grain Development.
    Zhu D; Zhu G; Zhang Z; Wang Z; Yan X; Yan Y
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32204325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic Analysis of Vernalization Responsive Proteins in Winter Wheat Jing841.
    Feng Y; Kong B; Zhang J; Chen X; Yuan J; Tang X; Ma C
    Protein Pept Lett; 2018; 25(3):260-274. PubMed ID: 29345567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery.
    Hao P; Zhu J; Gu A; Lv D; Ge P; Chen G; Li X; Yan Y
    Proteomics; 2015 May; 15(9):1544-63. PubMed ID: 25546360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.