BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33401071)

  • 1. Phytotoxic effect and molecular mechanism induced by nanodiamonds towards aquatic Chlorella pyrenoidosa by integrating regular and transcriptomic analyses.
    Zhang C; Chen X; Chou WC; Ho SH
    Chemosphere; 2021 May; 270():129473. PubMed ID: 33401071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure.
    Yang W; Gao P; Ma G; Huang J; Wu Y; Wan L; Ding H; Zhang W
    Environ Pollut; 2021 Sep; 284():117413. PubMed ID: 34049161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic and Physiological Responses of
    Zhang Y; Chen Z; Tao Y; Wu W; Zeng Y; Liao K; Li X; Chen L
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress.
    Ma Q; Zhang Q; Yang S; Yilihamu A; Shi M; Ouyang B; Guan X; Yang ST
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110658. PubMed ID: 31810567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azithromycin induces dual effects on microalgae: Roles of photosynthetic damage and oxidative stress.
    Mao Y; Yu Y; Ma Z; Li H; Yu W; Cao L; He Q
    Ecotoxicol Environ Saf; 2021 Oct; 222():112496. PubMed ID: 34243111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa.
    Yang W; Gao P; Li H; Huang J; Zhang Y; Ding H; Zhang W
    Sci Total Environ; 2021 Aug; 783():146919. PubMed ID: 33866172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery mechanism of a microalgal species, Chlorella sp. from toxicity of doxylamine: Physiological and biochemical changes, and transcriptomics.
    Chen Z; Xiong JQ
    J Hazard Mater; 2024 Aug; 474():134752. PubMed ID: 38815390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The toxicological impact of the sunscreen active ingredient octinoxate on the photosynthesis activity of Chlorella sp.
    Tian L; Huang L; Cui H; Yang F; Li Y
    Mar Environ Res; 2021 Oct; 171():105469. PubMed ID: 34500299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration- and nutrient-dependent cellular responses of microalgae Chlorella pyrenoidosa to perfluorooctanoic acid.
    Hu Y; Meng FL; Hu YY; Habibul N; Sheng GP
    Water Res; 2020 Oct; 185():116248. PubMed ID: 32777597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism.
    Li J; Min Z; Li W; Xu L; Han J; Li P
    Ecotoxicol Environ Saf; 2020 Mar; 191():110156. PubMed ID: 31958625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional Analysis of
    Duan L; Chen Q; Duan S
    Int J Environ Res Public Health; 2019 Apr; 16(8):. PubMed ID: 30995802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical- and species-specific toxicity of nonylphenol and octylphenol to microalgae Chlorella pyrenoidosa and Scenedesmus obliquus.
    Yang W; Gao X; Wu Y; Wan L; Lu C; Huang J; Chen H; Yang Y; Ding H; Zhang W
    Environ Toxicol Pharmacol; 2021 Jan; 81():103517. PubMed ID: 33080356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecotoxicological effects of the antidepressant fluoxetine and its removal by the typical freshwater microalgae Chlorella pyrenoidosa.
    Xie Z; Wang X; Gan Y; Cheng H; Fan S; Li X; Tang J
    Ecotoxicol Environ Saf; 2022 Oct; 244():114045. PubMed ID: 36055042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect and mechanism of TiO
    Middepogu A; Hou J; Gao X; Lin D
    Ecotoxicol Environ Saf; 2018 Oct; 161():497-506. PubMed ID: 29913418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The comparison of transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) and 4-n-nonylphenol.
    Ding N; Wang L; Kang Y; Luo K; Zeng D; Man YB; Zhang Q; Zeng L; Luo J; Jiang F
    Environ Geochem Health; 2020 Sep; 42(9):2881-2894. PubMed ID: 32026273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal mechanisms of erythromycin by microalgae Chlorella pyrenoidosa and toxicity assessment during the treatment process.
    Li J; Liu K; Li W; Zhang M; Li P; Han J
    Sci Total Environ; 2022 Nov; 848():157777. PubMed ID: 35926608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome profiling of the microalga Chlorella pyrenoidosa in response to different carbon dioxide concentrations.
    Sun X; Shen J; Bai F; Xu N
    Mar Genomics; 2016 Oct; 29():81-87. PubMed ID: 27209568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa.
    Li Y; Liu X; Zheng X; Yang M; Gao X; Huang J; Zhang L; Fan Z
    Sci Total Environ; 2021 Apr; 765():144431. PubMed ID: 33387923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of diatom glucose-6-phosphate dehydrogenase on lipogenic NADPH supply in green microalgae through plastidial oxidative pentose phosphate pathway.
    Xue J; Chen TT; Zheng JW; Balamurugan S; Cai JX; Liu YH; Yang WD; Liu JS; Li HY
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10803-10815. PubMed ID: 30349933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: Perspective from the physiological and transcriptional responses.
    Liao Y; Jiang X; Xiao Y; Li M
    Aquat Toxicol; 2020 Nov; 228():105650. PubMed ID: 33035767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.