BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33401119)

  • 1. Environmental risk assessment of using antifouling paints on pleasure crafts in European Union waters.
    Ytreberg E; Lagerström M; Nöu S; Wiklund AE
    J Environ Manage; 2021 Mar; 281():111846. PubMed ID: 33401119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifouling paints leach copper in excess - study of metal release rates and efficacy along a salinity gradient.
    Lagerström M; Ytreberg E; Wiklund AE; Granhag L
    Water Res; 2020 Nov; 186():116383. PubMed ID: 32916622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.
    Lagerström M; Lindgren JF; Holmqvist A; Dahlström M; Ytreberg E
    Mar Pollut Bull; 2018 Feb; 127():289-296. PubMed ID: 29475665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.
    Ytreberg E; Lagerström M; Holmqvist A; Eklund B; Elwing H; Dahlström M; Dahl P; Dahlström M
    Environ Pollut; 2017 Jun; 225():490-496. PubMed ID: 28341326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flawed risk assessment of antifouling paints leads to exceedance of guideline values in Baltic Sea marinas.
    Lagerström M; Ferreira J; Ytreberg E; Eriksson-Wiklund AK
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27674-27687. PubMed ID: 32394257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.
    Ytreberg E; Bighiu MA; Lundgren L; Eklund B
    Environ Pollut; 2016 Jun; 213():594-599. PubMed ID: 27016611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocides in antifouling paint formulations currently registered for use.
    Paz-Villarraga CA; Castro ÍB; Fillmann G
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):30090-30101. PubMed ID: 34997484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved estimates of environmental copper release rates from antifouling products.
    Finnie AA
    Biofouling; 2006; 22(5-6):279-91. PubMed ID: 17110352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review.
    Konstantinou IK; Albanis TA
    Environ Int; 2004 Apr; 30(2):235-48. PubMed ID: 14749112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifouling biocides in German marinas: Exposure assessment and calculation of national consumption and emission.
    Daehne D; Fürle C; Thomsen A; Watermann B; Feibicke M
    Integr Environ Assess Manag; 2017 Sep; 13(5):892-905. PubMed ID: 28127937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release and detection of nanosized copper from a commercial antifouling paint.
    Adeleye AS; Oranu EA; Tao M; Keller AA
    Water Res; 2016 Oct; 102():374-382. PubMed ID: 27393962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmentally benign sol-gel antifouling and foul-releasing coatings.
    Detty MR; Ciriminna R; Bright FV; Pagliaro M
    Acc Chem Res; 2014 Feb; 47(2):678-87. PubMed ID: 24397288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece.
    Sakkas VA; Konstantinou IK; Lambropoulou DA; Albanis TA
    Environ Sci Pollut Res Int; 2002; 9(5):327-32. PubMed ID: 12391808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring biofouling as a management tool for reducing toxic antifouling practices in the Baltic Sea.
    Wrange AL; Barboza FR; Ferreira J; Eriksson-Wiklund AK; Ytreberg E; Jonsson PR; Watermann B; Dahlström M
    J Environ Manage; 2020 Jun; 264():110447. PubMed ID: 32364954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can the input of biocides and polymeric substances from antifouling paints into the sea be reduced by the use of non-toxic hard coatings?
    Watermann B; Eklund B
    Mar Pollut Bull; 2019 Jul; 144():146-151. PubMed ID: 31179981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of organotin regulatory strategies, pending actions, related costs and benefits.
    Champ MA
    Sci Total Environ; 2000 Aug; 258(1-2):21-71. PubMed ID: 11007277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of currently used marine antifouling paint biocides on green fluorescent proteins in Anemonia viridis.
    Ünver B; Evingür GA; Çavaş L
    J Fluoresc; 2022 Nov; 32(6):2087-2096. PubMed ID: 35917050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The occurrence of modern organic antifouling biocides in Danish marinas.
    Koning JT; Bollmann UE; Bester K
    Mar Pollut Bull; 2020 Sep; 158():111402. PubMed ID: 32753187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-friendly non-biocide-release coatings for marine biofouling prevention.
    Silva ER; Ferreira O; Ramalho PA; Azevedo NF; Bayón R; Igartua A; Bordado JC; Calhorda MJ
    Sci Total Environ; 2019 Feb; 650(Pt 2):2499-2511. PubMed ID: 30293004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review.
    Amara I; Miled W; Slama RB; Ladhari N
    Environ Toxicol Pharmacol; 2018 Jan; 57():115-130. PubMed ID: 29258017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.