These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33401119)

  • 21. Quantification of Cu and Zn in antifouling paint films by XRF.
    Lagerström M; Ytreberg E
    Talanta; 2021 Feb; 223(Pt 2):121820. PubMed ID: 33298290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative environmental assessment of biocides used in antifouling paints.
    Voulvoulis N; Scrimshaw MD; Lester JN
    Chemosphere; 2002 May; 47(7):789-95. PubMed ID: 12079074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental pollution with antifouling paint particles: Distribution, ecotoxicology, and sustainable alternatives.
    Torres FG; De-la-Torre GE
    Mar Pollut Bull; 2021 Aug; 169():112529. PubMed ID: 34058498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal and PAH loads from ships and boats, relative other sources, in the Baltic Sea.
    Ytreberg E; Hansson K; Hermansson AL; Parsmo R; Lagerström M; Jalkanen JP; Hassellöv IM
    Mar Pollut Bull; 2022 Sep; 182():113904. PubMed ID: 35878478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects.
    Thomas KV; Fileman TW; Readman JW; Waldock MJ
    Mar Pollut Bull; 2001 Aug; 42(8):677-88. PubMed ID: 11525285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk assessment of biocides in roof paint. Part 1: experimental determination and modelling of biocide leaching from roof paint.
    Jungnickel C; Stock F; Brandsch T; Ranke J
    Environ Sci Pollut Res Int; 2008 May; 15(3):258-65. PubMed ID: 18504845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters.
    Cresswell T; Richards JP; Glegg GA; Readman JW
    Mar Pollut Bull; 2006 Oct; 52(10):1169-75. PubMed ID: 16574163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are silicone foul-release coatings a viable and environmentally sustainable alternative to biocidal antifouling coatings in the Baltic Sea region?
    Lagerström M; Wrange AL; Oliveira DR; Granhag L; Larsson AI; Ytreberg E
    Mar Pollut Bull; 2022 Nov; 184():114102. PubMed ID: 36113175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicted concentrations of biocides from antifouling paints in Visakhapatnam Harbour.
    Mukherjee A; Rao KV; Ramesh US
    J Environ Manage; 2009 Feb; 90 Suppl 1():S51-9. PubMed ID: 18976852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The environmental fate and effects of antifouling paint biocides.
    Thomas KV; Brooks S
    Biofouling; 2010 Jan; 26(1):73-88. PubMed ID: 20390558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioassays and selected chemical analysis of biocide-free antifouling coatings.
    Watermann BT; Daehne B; Sievers S; Dannenberg R; Overbeke JC; Klijnstra JW; Heemken O
    Chemosphere; 2005 Sep; 60(11):1530-41. PubMed ID: 15878605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photodegradation of the antifouling compounds Irgarol 1051 and Diuron released from a commercial antifouling paint.
    Okamura H
    Chemosphere; 2002 Jul; 48(1):43-50. PubMed ID: 12137056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antifouling biocides in discarded marine paint particles.
    Parks R; Donnier-Marechal M; Frickers PE; Turner A; Readman JW
    Mar Pollut Bull; 2010 Aug; 60(8):1226-30. PubMed ID: 20381093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotoxicity and life cycle assessment of two commercial antifouling coatings in marine systems.
    Rossini P; Napolano L; Matteucci G
    Chemosphere; 2019 Dec; 237():124475. PubMed ID: 31549636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Occurrence and partitioning of antifouling booster biocides in sediments and porewaters from Brazilian Northeast.
    Viana JLM; Dos Santos SRV; Dos Santos Franco TCR; Almeida MAP
    Environ Pollut; 2019 Dec; 255(Pt 1):112988. PubMed ID: 31541816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies.
    Valkirs AO; Seligman PF; Haslbeck E; Caso JS
    Mar Pollut Bull; 2003 Jun; 46(6):763-79. PubMed ID: 12787585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased persistence of antifouling paint biocides when associated with paint particles.
    Thomas KV; McHugh M; Hilton M; Waldock M
    Environ Pollut; 2003; 123(1):153-61. PubMed ID: 12663215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper leaching from recreational vessel antifouling paints in freshwater: A Berlin case study.
    Schröder L; Hellweger F; Putschew A
    J Environ Manage; 2022 Jan; 301():113895. PubMed ID: 34634724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Risk assessment of selected priority pollutants coming from boating activities.
    Ansanelli G; Parrella L; Di Landa G; Massanisso P; Schiavo S; Manzo S
    Environ Monit Assess; 2016 Jul; 188(7):435. PubMed ID: 27344560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Affinity states of biocides determine bioavailability and release rates in marine paints.
    Dahlström M; Sjögren M; Jonsson PR; Göransson U; Lindh L; Arnebrant T; Pinori E; Elwing H; Berglin M
    Biofouling; 2015; 31(2):201-10. PubMed ID: 25775096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.