These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Strain effects on phonon transport in antimonene investigated using a first-principles study. Zhang AX; Liu JT; Guo SD; Li HC Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286 [TBL] [Abstract][Full Text] [Related]
23. Tensile strain and finite size modulation of low lattice thermal conductivity in monolayer TMDCs (HfSe Chen G; Bao W; Wang Z; Tang D Phys Chem Chem Phys; 2023 Mar; 25(13):9225-9237. PubMed ID: 36919457 [TBL] [Abstract][Full Text] [Related]
24. The effect of non-analytical corrections on the phononic thermal transport in InX (X = S, Se, Te) monolayers. Shafique A; Shin YH Sci Rep; 2020 Jan; 10(1):1093. PubMed ID: 31974441 [TBL] [Abstract][Full Text] [Related]
25. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Fu B; Tang G; Li Y Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205 [TBL] [Abstract][Full Text] [Related]
26. Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX Bi S; Sun Z; Yuan K; Chang Z; Zhang X; Gao Y; Tang D Phys Chem Chem Phys; 2021 Oct; 23(41):23718-23729. PubMed ID: 34642727 [TBL] [Abstract][Full Text] [Related]
28. Enhancing phonon thermal transport in 2H-CrX Tang S; Wan D; Bai S; Fu S; Wang X; Li X; Zhang J Phys Chem Chem Phys; 2023 Aug; 25(33):22401-22414. PubMed ID: 37581216 [TBL] [Abstract][Full Text] [Related]
29. First-principles calculations of phonon behaviors in graphether: a comparative study with graphene. Yang X; Han D; Fan H; Wang M; Du M; Wang X Phys Chem Chem Phys; 2021 Jan; 23(1):123-130. PubMed ID: 33331842 [TBL] [Abstract][Full Text] [Related]
30. The first-principles and BTE investigation of phonon transport in 1T-TiSe Wang ZL; Chen G; Zhang X; Tang D Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842 [TBL] [Abstract][Full Text] [Related]
31. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study. Guo SD; Liu JT Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337 [TBL] [Abstract][Full Text] [Related]
32. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900 [TBL] [Abstract][Full Text] [Related]
33. Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X Mohanta MK; Rawat A; Jena N; Ahammed R; De Sarkar A J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32340009 [TBL] [Abstract][Full Text] [Related]
34. Thermal Properties of 2D Dirac Materials MN Wang M; Han D ACS Omega; 2022 Mar; 7(12):10812-10819. PubMed ID: 35382343 [TBL] [Abstract][Full Text] [Related]
35. Ultralow lattice thermal conductivity and high thermoelectric performance of monolayer KCuTe: a first principles study. Gu J; Huang L; Liu S RSC Adv; 2019 Nov; 9(62):36301-36307. PubMed ID: 35540616 [TBL] [Abstract][Full Text] [Related]
37. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Qin G; Yan QB; Qin Z; Yue SY; Hu M; Su G Phys Chem Chem Phys; 2015 Feb; 17(7):4854-8. PubMed ID: 25594447 [TBL] [Abstract][Full Text] [Related]
38. The effect of four-phonon interaction on phonon thermal conductivity of hexagonal VTe Jin D; Zhang P; Tian Z; Zhang Z; Yuan Y; Liu Y; Lu Z; Xiong R Phys Chem Chem Phys; 2023 Nov; 25(42):28669-28676. PubMed ID: 37849319 [TBL] [Abstract][Full Text] [Related]
39. Low thermal conductivity and high performance anisotropic thermoelectric properties of XSe (X = Cu, Ag, Au) monolayers. Xie QY; Ma JJ; Liu QY; Liu PF; Zhang P; Zhang KW; Wang BT Phys Chem Chem Phys; 2022 Mar; 24(12):7303-7310. PubMed ID: 35262117 [TBL] [Abstract][Full Text] [Related]
40. Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu Zhang T; Yu T; Ning S; Zhang Z; Qi N; Jiang M; Chen Z ACS Appl Mater Interfaces; 2023 Jul; 15(27):32453-32462. PubMed ID: 37368823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]