BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33401447)

  • 1. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes.
    Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack.
    Sugimoto Y; Ujike R; Higa M; Kakihana Y; Higa M
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis.
    Besha AT; Tsehaye MT; Aili D; Zhang W; Tufa RA
    Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31906203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy Harvesting from Brines by Reverse Electrodialysis Using Nafion Membranes.
    Avci AH; Messana DA; Santoro S; Tufa RA; Curcio E; Di Profio G; Fontananova E
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32731421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of Seawater Reverse Osmosis Brine by Monovalent Ion-Selective Membranes through Electrodialysis.
    Sharma PP; Mohammed S; Aburabie J; Hashaikeh R
    Membranes (Basel); 2023 May; 13(6):. PubMed ID: 37367766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs.
    Kaya TZ; Altıok E; Güler E; Kabay N
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Feed Solution Temperature on the Power Output Performance of a Pilot-Scale Reverse Electrodialysis (RED) System with Different Intermediate Distance.
    Mehdizadeh S; Yasukawa M; Abo T; Kuno M; Noguchi Y; Higa M
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31216734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Electrodialysis Desalination Performance of Novel Bioinspired and Conventional Ion Exchange Membranes with Sodium Chloride Feed Solutions.
    Hyder AG; Morales BA; Cappelle MA; Percival SJ; Small LJ; Spoerke ED; Rempe SB; Walker WS
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33808723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic Valorisation of Saltworks Bitterns via Reverse Electrodialysis: A Laboratory Experimental Campaign.
    Abdullah Shah S; Cucchiara R; Vicari F; Cipollina A; Tamburini A; Micale G
    Membranes (Basel); 2023 Feb; 13(3):. PubMed ID: 36984679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack.
    Zhang B; Gao H; Chen Y
    Environ Sci Technol; 2015 Dec; 49(24):14717-24. PubMed ID: 26560232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between Properties of Pore-Filling Ion Exchange Membranes and Performance of a Reverse Electrodialysis Stack for High Power Density.
    Kim H; Choi J; Jeong N; Jung YG; Kim H; Kim D; Yang S
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Pretreatment Methods for Salinity Gradient Power Generation Using Reverse Electrodialysis (RED) Systems.
    Ju J; Choi Y; Lee S; Park CG; Hwang T; Jung N
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.
    Rijnaarts T; Huerta E; van Baak W; Nijmeijer K
    Environ Sci Technol; 2017 Nov; 51(21):13028-13035. PubMed ID: 28950057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-efficient treatment of ion exchange spent brine via electrodialysis to recover NaCl and minimize waste disposal.
    Haddad M; Bazinet L; Barbeau B
    Sci Total Environ; 2019 Nov; 690():400-409. PubMed ID: 31302538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent.
    Nam JY; Hwang KS; Kim HC; Jeong H; Kim H; Jwa E; Yang S; Choi J; Kim CS; Han JH; Jeong N
    Water Res; 2019 Jan; 148():261-271. PubMed ID: 30388527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of mono- and di-valent ions from seawater reverse osmosis brine using selective electrodialysis.
    Yang Y; Sun Y; Song X; Yu J
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):18754-18767. PubMed ID: 32651781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation.
    Nam JY; Jwa E; Eom H; Kim H; Hwang K; Jeong N
    Water Res; 2021 Jul; 200():117255. PubMed ID: 34062402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.