BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33401458)

  • 1. Visual Echolocation Concept for the Colorophone Sensory Substitution Device Using Virtual Reality.
    Bizoń-Angov P; Osiński D; Wierzchoń M; Konieczny J
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorophone 2.0: A Wearable Color Sonification Device Generating Live Stereo-Soundscapes-Design, Implementation, and Usability Audit.
    Osiński D; Łukowska M; Hjelme DR; Wierzchoń M
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Study in Real-Time Scene Sonification for Visually Impaired People.
    Hu W; Wang K; Yang K; Cheng R; Ye Y; Sun L; Xu Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VES: A Mixed-Reality Development Platform of Navigation Systems for Blind and Visually Impaired.
    Real S; Araujo A
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic Echolocation Device for Assisting the Visually Impaired.
    Mick B; Reddmann N; Manwar R; Avanaki K
    Curr Med Imaging; 2020; 16(5):601-610. PubMed ID: 32484095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary investigation of SEZUAL device for basic material identification and simple spatial navigation for blind and visually impaired people.
    Gabdreshov G; Magzymov D; Yensebayev N
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1343-1350. PubMed ID: 36756982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigation aid for blind persons by visual-to-auditory sensory substitution: A pilot study.
    Neugebauer A; Rifai K; Getzlaff M; Wahl S
    PLoS One; 2020; 15(8):e0237344. PubMed ID: 32818953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seeing through Events: Real-Time Moving Object Sonification for Visually Impaired People Using Event-Based Camera.
    Ji Z; Hu W; Wang Z; Yang K; Wang K
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereo Vision Based Sensory Substitution for the Visually Impaired.
    Caraiman S; Zvoristeanu O; Burlacu A; Herghelegiu P
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Device for Human Ultrasonic Echolocation.
    Sohl-Dickstein J; Teng S; Gaub BM; Rodgers CC; Li C; DeWeese MR; Harper NS
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1526-1534. PubMed ID: 25608301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation.
    Maidenbaum S; Levy-Tzedek S; Chebat DR; Namer-Furstenberg R; Amedi A
    Multisens Res; 2014; 27(5-6):379-97. PubMed ID: 25693302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Navigation and Augmented Reality System for Visually Impaired People.
    Lo Valvo A; Croce D; Garlisi D; Giuliano F; Giarré L; Tinnirello I
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution.
    Maidenbaum S; Buchs G; Abboud S; Lavi-Rotbain O; Amedi A
    PLoS One; 2016; 11(2):e0147501. PubMed ID: 26882473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image Captioning for the Visually Impaired and Blind: A Recipe for Low-Resource Languages.
    Arystanbekov B; Kuzdeuov A; Nurgaliyev S; Varol HA
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Haptic Perception as an Educational Assistive Technology: A Case Study in Inclusive Education.
    Espinosa-Castaneda R; Medellin-Castillo HI
    IEEE Trans Haptics; 2021; 14(1):152-160. PubMed ID: 32746373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LIDAR Assist Spatial Sensing for the Visually Impaired and Performance Analysis.
    Ton C; Omar A; Szedenko V; Tran VH; Aftab A; Perla F; Bernstein MJ; Yang Y
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1727-1734. PubMed ID: 30047892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Unfolding Space Glove: A Wearable Spatio-Visual to Haptic Sensory Substitution Device for Blind People.
    Kilian J; Neugebauer A; Scherffig L; Wahl S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.
    Hub A; Hartter T; Kombrink S; Ertl T
    Disabil Rehabil Assist Technol; 2008 Jan; 3(1):57-68. PubMed ID: 18416518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.