These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33401463)

  • 1. Mass Transport in Osmotically Driven Membrane Processes.
    Xie P; Cath TY; Ladner DA
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of CFD Modelling and Performance Metrics for Osmotic Membrane Processes.
    Toh KY; Liang YY; Lau WJ; Fimbres Weihs GA
    Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33076290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems.
    Siddiqui A; Farhat N; Bucs SS; Linares RV; Picioreanu C; Kruithof JC; van Loosdrecht MC; Kidwell J; Vrouwenvelder JS
    Water Res; 2016 Mar; 91():55-67. PubMed ID: 26773488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes.
    She Q; Jin X; Li Q; Tang CY
    Water Res; 2012 May; 46(7):2478-86. PubMed ID: 22386887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Forward Osmosis Operating Pressure on Deformation, Efficiency and Concentration Polarisation with Novel Links to CFD.
    Charlton AJ; Blandin G; Leslie G; Le-Clech P
    Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33652896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adverse impact of feed channel spacers on the performance of pressure retarded osmosis.
    Kim YC; Elimelech M
    Environ Sci Technol; 2012 Apr; 46(8):4673-81. PubMed ID: 22420537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of FO Operating Pressure and Membrane Tensile Strength on Draw-Channel Geometry and Resulting Hydrodynamics.
    Charlton AJ; Lian B; Blandin G; Leslie G; Le-Clech P
    Membranes (Basel); 2020 May; 10(5):. PubMed ID: 32466224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.
    Klaysom C; Cath TY; Depuydt T; Vankelecom IF
    Chem Soc Rev; 2013 Aug; 42(16):6959-89. PubMed ID: 23778699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics.
    Wei W; Zou X; Ji X; Zhou R; Zhao K; Wang Y
    Membranes (Basel); 2021 May; 11(5):. PubMed ID: 34068812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: Experiment and numerical simulation.
    Lin WC; Shao RP; Wang XM; Huang X
    Water Res; 2020 Oct; 185():116251. PubMed ID: 32771564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse draw solute permeation in forward osmosis: modeling and experiments.
    Phillip WA; Yong JS; Elimelech M
    Environ Sci Technol; 2010 Jul; 44(13):5170-6. PubMed ID: 20527762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fouling resilient perforated feed spacers for membrane filtration.
    Kerdi S; Qamar A; Vrouwenvelder JS; Ghaffour N
    Water Res; 2018 Sep; 140():211-219. PubMed ID: 29715645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion selective permeation through cellulose acetate membranes in forward osmosis.
    Irvine GJ; Rajesh S; Georgiadis M; Phillip WA
    Environ Sci Technol; 2013 Dec; 47(23):13745-53. PubMed ID: 24152190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forward osmosis niches in seawater desalination and wastewater reuse.
    Valladares Linares R; Li Z; Sarp S; Bucs SS; Amy G; Vrouwenvelder JS
    Water Res; 2014 Dec; 66():122-139. PubMed ID: 25201336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofouling in forward osmosis systems: An experimental and numerical study.
    Bucs SS; Valladares Linares R; Vrouwenvelder JS; Picioreanu C
    Water Res; 2016 Dec; 106():86-97. PubMed ID: 27697688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries.
    Gruber MF; Johnson CJ; Tang C; Jensen MH; Yde L; Hélix-Nielsen C
    Membranes (Basel); 2012 Nov; 2(4):764-82. PubMed ID: 24958428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrodialysis desalination: The impact of solution flowrate (or Reynolds number) on fluid dynamics throughout membrane spacers.
    Al-Amshawee SKA; Yunus MYBM
    Environ Res; 2023 Feb; 219():115115. PubMed ID: 36574794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel corrugated wall channel module for external concentration polarization mitigation in forward osmosis process.
    Zhang H; Shen C; Cui H; Yang F
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32791-32801. PubMed ID: 30251040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct microscopic observation of forward osmosis membrane fouling.
    Wang Y; Wicaksana F; Tang CY; Fane AG
    Environ Sci Technol; 2010 Sep; 44(18):7102-9. PubMed ID: 20735033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.