These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33401490)

  • 1. Temperature-Modulated Scanning Calorimetry of Melting-Recrystallization of Poly(butylene terephthalate).
    Toda A
    Polymers (Basel); 2021 Jan; 13(1):. PubMed ID: 33401490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Transition and Melt-Recrystallization Behavior of Poly(Butylene Adipate) Investigated by Simultaneous Measurements of Wide-Angle X-Ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC).
    Wang M; Cao W
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31906584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cocrystallization model for synthetic biodegradable poly(butylene adipate-co-butylene terephthalate).
    Cranston E; Kawada J; Raymond S; Morin FG; Marchessault RH
    Biomacromolecules; 2003; 4(4):995-9. PubMed ID: 12857084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-isothermal crystallization kinetics and rheological behaviors of PBT/PET blends: effects of PET property and nano-silica content.
    Chen S; Fu X; Jing Z; Chen H
    Des Monomers Polym; 2022; 25(1):32-46. PubMed ID: 35185358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorganization of Poly(Butylene Succinate) Containing Crystals of Low Stability.
    Jariyavidyanont K; Schick C; Androsch R
    Macromol Rapid Commun; 2024 Jun; ():e2400273. PubMed ID: 38876477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Nonisothermal Crystallization Kinetics of Poly(Butylene Terephthalate-
    Mao HI; Chen CW; Rwei SP
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32846871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
    Magoń A; Pyda M
    Carbohydr Res; 2011 Nov; 346(16):2558-66. PubMed ID: 22000766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The low-temperature endotherm in poly(ethylene terephthalate): partial melting and rigid amorphous fraction mobilization.
    Righetti MC; Lorenzo ML; Tombari E; Angiuli M
    J Phys Chem B; 2008 Apr; 112(14):4233-41. PubMed ID: 18351760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol % ethylene succinate) copolyester.
    Gan Z; Abe H; Doi Y
    Biomacromolecules; 2001; 2(1):313-21. PubMed ID: 11749188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supernucleation and Orientation of Poly(butylene terephthalate) Crystals in Nanocomposites Containing Highly Reduced Graphene Oxide.
    Colonna S; Pérez-Camargo RA; Chen H; Liu G; Wang D; Müller AJ; Saracco G; Fina A
    Macromolecules; 2017 Dec; 50(23):9380-9393. PubMed ID: 29296028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 3-Phase Structure of Polyesters (PBT, PET) after Isothermal and Non-Isothermal Crystallization.
    Heidrich D; Gehde M
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and conformational changes of poly(trimethylene terephthalate) during isothermal melt crystallization.
    Vasanthan N; Ozkaya S; Yaman M
    J Phys Chem B; 2010 Oct; 114(41):13069-75. PubMed ID: 20942505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, Characterization and Properties of Biodegradable Poly(Butylene Sebacate-
    Kim SJ; Kwak HW; Kwon S; Jang H; Park SI
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33081379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystalline/amorphous phase structure and molecular mobility of biodegradable poly(butylene adipate-co-butylene terephthalate) and related polyesters.
    Kuwabara K; Gan Z; Nakamura T; Abe H; Doi Y
    Biomacromolecules; 2002; 3(2):390-6. PubMed ID: 11888327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of tensile modulus based on parameters of crystalline structure in polyethylene terephthalate with cold crystallization ability.
    Zarbali A; Djaffar I; Menyhárd A
    Heliyon; 2024 Feb; 10(4):e26122. PubMed ID: 38404902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of Polymer Crystallization by In Situ Combination of Atomic Force Microscopy and Fast Scanning Calorimetry.
    Zhang R; Zhuravlev E; Androsch R; Schick C
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31096647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental studies of maxillofacial materials: Part 1. Differential scanning calorimetric analyses of a heat-polymerized silicone.
    Vickery JM; Paulus MW; Brantley WA; Culbertson BM; Johnston WM
    Int J Prosthodont; 1995; 8(3):221-7. PubMed ID: 10348589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and hydrolytic degradation of degradable poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG) copolymers.
    Chao G; Fan L; Jia W; Qian Z; Gu Y; Liu C; Ni X; Li J; Deng H; Gong C; Gou M; Lei K; Huang A; Huang C; Yang J; Kan B; Tu M
    J Mater Sci Mater Med; 2007 Mar; 18(3):449-55. PubMed ID: 17334695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal reorganization of poly(ethylene terephthalate) revealed by fast calorimetry (1000 K s(-1); 5 ms).
    Minakov AA; Mordvintsev DA; Schick C
    Faraday Discuss; 2005; 128():261-70. PubMed ID: 15658778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
    Shah AA; Kato S; Shintani N; Kamini NR; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3437-47. PubMed ID: 24522729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.