These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Elucidation of rubber biosynthesis and accumulation in the rubber producing shrub, guayule (Parthenium argentatum Gray). Kajiura H; Suzuki N; Mouri H; Watanabe N; Nakazawa Y Planta; 2018 Feb; 247(2):513-526. PubMed ID: 29116401 [TBL] [Abstract][Full Text] [Related]
6. A high-throughput quantification of resin and rubber contents in Luo Z; Thorp KR; Abdel-Haleem H Plant Methods; 2019; 15():154. PubMed ID: 31889978 [TBL] [Abstract][Full Text] [Related]
7. Guayule and Russian dandelion as alternative sources of natural rubber. van Beilen JB; Poirier Y Crit Rev Biotechnol; 2007; 27(4):217-31. PubMed ID: 18085463 [TBL] [Abstract][Full Text] [Related]
9. RNASeq analysis of drought-stressed guayule reveals the role of gene transcription for modulating rubber, resin, and carbohydrate synthesis. Dong C; Ponciano G; Huo N; Gu Y; Ilut D; McMahan C Sci Rep; 2021 Nov; 11(1):21610. PubMed ID: 34732788 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic and evolutionary analysis of the mechanisms by which P. argentatum, a rubber producing perennial, responds to drought. Nelson ADL; Ponciano G; McMahan C; Ilut DC; Pugh NA; Elshikha DE; Hunsaker DJ; Pauli D BMC Plant Biol; 2019 Nov; 19(1):494. PubMed ID: 31722667 [TBL] [Abstract][Full Text] [Related]
11. A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro. Kim IJ; Ryu SB; Kwak YS; Kang H J Exp Bot; 2004 Feb; 55(396):377-85. PubMed ID: 14718497 [TBL] [Abstract][Full Text] [Related]
12. Absence of cross-reactivity of IgE antibodies from subjects allergic to Hevea brasiliensis latex with a new source of natural rubber latex from guayule (Parthenium argentatum). Siler DJ; Cornish K; Hamilton RG J Allergy Clin Immunol; 1996 Nov; 98(5 Pt 1):895-902. PubMed ID: 8939152 [TBL] [Abstract][Full Text] [Related]
13. Photosynthesis and assimilate partitioning between carbohydrates and isoprenoid products in vegetatively active and dormant guayule: physiological and environmental constraints on rubber accumulation in a semiarid shrub. Salvucci ME; Barta C; Byers JA; Canarini A Physiol Plant; 2010 Dec; 140(4):368-79. PubMed ID: 20727105 [TBL] [Abstract][Full Text] [Related]
14. Composition of Guayule (Parthenium argentatum Gray) resin. Rousset A; Ginies C; Chevallier O; Martinez-Vazquez M; Amor A; Dorget M; Chemat F; Perino S Sci Rep; 2023 Feb; 13(1):3395. PubMed ID: 36854959 [TBL] [Abstract][Full Text] [Related]
15. Characterization of resin extracted from guayule ( Dehghanizadeh M; Cheng F; Jarvis JM; Holguin FO; Brewer CE Data Brief; 2020 Aug; 31():105989. PubMed ID: 32715039 [TBL] [Abstract][Full Text] [Related]
16. Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species. Cornish K; Scott DJ; Xie W; Mau CJD; Zheng YF; Liu XH; Prestwich GD Phytochemistry; 2018 Dec; 156():55-72. PubMed ID: 30195165 [TBL] [Abstract][Full Text] [Related]
17. Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray. da Costa BM; Keasling JD; McMahan CM; Cornish K Phytochemistry; 2006 Aug; 67(15):1621-8. PubMed ID: 16780905 [TBL] [Abstract][Full Text] [Related]
18. Argentatin Content in Guayule Leaves ( García-Martínez MM; Gallego B; Latorre G; Carrión ME; De la Cruz-Morcillo MÁ; Zalacain A; Carmona M Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653938 [TBL] [Abstract][Full Text] [Related]
19. Initiator-independent and initiator-dependent rubber biosynthesis in Ficus elastica. Espy SC; Keasling JD; Castillón J; Cornish K Arch Biochem Biophys; 2006 Apr; 448(1-2):13-22. PubMed ID: 16488387 [TBL] [Abstract][Full Text] [Related]
20. Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree. Kang H; Kang MY; Han KH Plant Physiol; 2000 Jul; 123(3):1133-42. PubMed ID: 10889262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]