These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 33401507)
21. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Yu Z; Lin Z; Shao X; Wang LP Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864 [TBL] [Abstract][Full Text] [Related]
22. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel. Kwon JY; Kim T; Kim J; Cho Y Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390 [TBL] [Abstract][Full Text] [Related]
23. Dynamics of Active Brownian Particles in Plasma. Arkar K; Vasiliev MM; Petrov OF; Kononov EA; Trukhachev FM Molecules; 2021 Jan; 26(3):. PubMed ID: 33494544 [TBL] [Abstract][Full Text] [Related]
24. Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration. Kim MM; Zydney AL J Colloid Interface Sci; 2004 Jan; 269(2):425-31. PubMed ID: 14654403 [TBL] [Abstract][Full Text] [Related]
25. Scaling analysis for the investigation of slip mechanisms in nanofluids. Savithiri S; Pattamatta A; Das SK Nanoscale Res Lett; 2011 Jul; 6(1):471. PubMed ID: 21791036 [TBL] [Abstract][Full Text] [Related]
26. Filter-matrix lattice Boltzmann model for microchannel gas flows. Zhuo C; Zhong C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383 [TBL] [Abstract][Full Text] [Related]
27. Numerical modeling of submicron particles for acoustic concentration in gaseous flow. Liu J; Li X; Hu FQ J Acoust Soc Am; 2020 Jan; 147(1):152. PubMed ID: 32007011 [TBL] [Abstract][Full Text] [Related]
28. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries. Silva G Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480 [TBL] [Abstract][Full Text] [Related]
29. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review. Jing D; Bhushan B J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432 [TBL] [Abstract][Full Text] [Related]
30. Effect of slip boundary condition on the design of nanoparticle focusing lenses. Cho DG; Na JG; Choi JB; Kim YJ; Kim T J Nanosci Nanotechnol; 2008 Jul; 8(7):3741-8. PubMed ID: 19051931 [TBL] [Abstract][Full Text] [Related]
31. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Hahn MW; O'Meliae CR Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738 [TBL] [Abstract][Full Text] [Related]
32. Analysis and Optimization of Trapezoidal Grooved Microchannel Heat Sink Using Nanofluids in a Micro Solar Cell. Wang R; Wang W; Wang J; Zhu Z Entropy (Basel); 2017 Dec; 20(1):. PubMed ID: 33265098 [TBL] [Abstract][Full Text] [Related]
33. Pressure Drop of Microchannel Plate Fin Heat Sinks. Duan Z; Ma H; He B; Su L; Zhang X Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30678359 [TBL] [Abstract][Full Text] [Related]
34. Thermophoretic force on nonspherical particles in the free-molecule regime. Yu S; Wang J; Xia G; Zong L Phys Rev E; 2018 May; 97(5-1):053106. PubMed ID: 29906953 [TBL] [Abstract][Full Text] [Related]
35. A theory for the slip and drag of superhydrophobic surfaces with surfactant. Landel JR; Peaudecerf FJ; Temprano-Coleto F; Gibou F; Goldstein RE; Luzzatto-Fegiz P J Fluid Mech; 2020 Jan; 883():. PubMed ID: 31806916 [TBL] [Abstract][Full Text] [Related]
36. Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model. Hewlin RL; Tindall JM Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768867 [TBL] [Abstract][Full Text] [Related]
37. Role of the thermophoretic force on the transport of nanoparticles in dusty silane plasmas. De Bleecker K; Bogaerts A; Goedheer W Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066405. PubMed ID: 16089878 [TBL] [Abstract][Full Text] [Related]
38. Numerical study of thermal and solutal advancements in ZnO-SAE50 nanolubricant flow past a convergent/divergent channel with the effects of thermophoretic particle deposition. B S; Srilatha P; Khan U; R NK; Ben Ahmed S; Kumar R Nanoscale Adv; 2023 Nov; 5(23):6647-6658. PubMed ID: 38024299 [TBL] [Abstract][Full Text] [Related]
39. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Bhagat AA; Kuntaegowdanahalli SS; Papautsky I Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692 [TBL] [Abstract][Full Text] [Related]
40. Drag and lift coefficients of ellipsoidal particles under rarefied flow conditions. Livi C; Di Staso G; Clercx HJH; Toschi F Phys Rev E; 2022 Jan; 105(1-2):015306. PubMed ID: 35193293 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]