These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33401670)

  • 1. A Dispersion Compensation Method Based on Resampling of Modulated Signal for FMCW Lidar.
    Jiang S; Liu B; Wang S
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FMCW laser ranging method based on a frequency multiplier.
    Jiang S; Liu B; Wang H
    Appl Opt; 2021 Feb; 60(4):918-922. PubMed ID: 33690398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear error correction for FMCW ladar by the amplitude modulation method.
    Zhang T; Qu X; Zhang F
    Opt Express; 2018 Apr; 26(9):11519-11528. PubMed ID: 29716070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-accuracy range-sensing system based on FMCW using low-cost VCSEL.
    Hariyama T; Sandborn PAM; Watanabe M; Wu MC
    Opt Express; 2018 Apr; 26(7):9285-9297. PubMed ID: 29715882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance.
    Pan H; Qu X; Zhang F
    Opt Express; 2018 Jun; 26(12):15186-15198. PubMed ID: 30114769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FMCW LiDAR with an FM nonlinear kernel function for dynamic-distance measurement.
    Zehao Y; Cheng L; Guodong L
    Opt Express; 2022 May; 30(11):19582-19596. PubMed ID: 36221731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Spectrum Correction Algorithm Based on Beat Signal of FMCW Laser Ranging System.
    Hao Y; Song P; Wang X; Pan Z
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directly modulated optical negative feedback lasers for long-range FMCW LiDAR.
    Yokota N; Kiuchi H; Yasaka H
    Opt Express; 2022 Mar; 30(7):11693-11703. PubMed ID: 35473108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long distance high resolution FMCW laser ranging with phase noise compensation and 2D signal processing.
    Ke JY; Song ZQ; Wang PS; Cui ZM; Mo D; Lin M; Wang R; Wu J
    Appl Opt; 2022 Apr; 61(12):3443-3454. PubMed ID: 35471441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-precision frequency estimation for frequency modulated continuous wave laser ranging using the multiple signal classification method.
    Pan H; Zhang F; Shi C; Qu X
    Appl Opt; 2017 Aug; 56(24):6956-6961. PubMed ID: 29048041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna.
    Furukado Y; Abe H; Hinakura Y; Baba T
    Opt Express; 2018 Jul; 26(14):18222-18229. PubMed ID: 30114102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method of Measuring Instantaneous Frequency of an Ultrafast Frequency Modulated Continuous-Wave Laser.
    Yang J; Yang T; Wang Z; Jia D; Ge C
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FMCW LiDAR System to Reduce Hardware Complexity and Post-Processing Techniques to Improve Distance Resolution.
    Kim C; Jung Y; Lee S
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33266404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly-time-resolved FMCW LiDAR with synchronously-nonlinearity-corrected acquisition for dynamic locomotion.
    Sun C; Chen Z; Ye S; Lin J; Shi W; Li B; Teng F; Li X; Zhang A
    Opt Express; 2023 Feb; 31(5):7774-7788. PubMed ID: 36859902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear error correction for Terahertz FMCW System by a new beat frequency estimation method.
    You CW; Chen ST; Wang TY; Liu JS; Wang KJ; Yang ZG
    Opt Express; 2021 Oct; 29(21):34510-34521. PubMed ID: 34809239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor.
    Bhutani A; Marahrens S; Gehringer M; Göttel B; Pauli M; Zwick T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method based on chirp decomposition for dispersion mismatch compensation in precision absolute distance measurement using swept-wavelength interferometry.
    Lu C; Liu G; Liu B; Chen F; Hu T; Zhuang Z; Xu X; Gan Y
    Opt Express; 2015 Dec; 23(25):31662-71. PubMed ID: 26698959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute Distance Measurement Using Frequency-Scanning Interferometry Based on Hilbert Phase Subdivision.
    Jiang S; Liu B; Wang H; Zhao B
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear calibration of frequency modulated continuous wave LIDAR based on a microresonator soliton comb.
    Jia L; Wang Y; Wang X; Zhang F; Wang W; Wang J; Zheng J; Chen J; Song M; Ma X; Yuan M; Little B; Chu ST; Cheng D; Qu X; Zhao W; Zhang W
    Opt Lett; 2021 Mar; 46(5):1025-1028. PubMed ID: 33649648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.
    Ahn TJ; Jung Y; Oh K; Kim DY
    Opt Express; 2005 Dec; 13(25):10040-8. PubMed ID: 19503215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.