These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Study on 1,3,5-triazine chemistry in dehydrocondensation: gauche effect on the generation of active triazinylammonium species. Kunishima M; Ujigawa T; Nagaoka Y; Kawachi C; Hioki K; Shiro M Chemistry; 2012 Dec; 18(49):15856-67. PubMed ID: 23059753 [TBL] [Abstract][Full Text] [Related]
3. Study of 1,3,5-triazine-based catalytic amide-forming reactions: effect of solvents and basicity of reactants. Kunishima M; Kitamura M; Tanaka H; Nakakura I; Moriya T; Hioki K Chem Pharm Bull (Tokyo); 2013; 61(8):882-6. PubMed ID: 23902870 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Weinreb amides using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM). Hioki K; Kobayashi H; Ohkihara R; Tani S; Kunishima M Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):470-2. PubMed ID: 15056969 [TBL] [Abstract][Full Text] [Related]
6. N-triazinylammonium tetrafluoroborates. A new generation of efficient coupling reagents useful for peptide synthesis. Kamiński ZJ; Kolesińska B; Kolesińska J; Sabatino G; Chelli M; Rovero P; Błaszczyk M; Główka ML; Papini AM J Am Chem Soc; 2005 Dec; 127(48):16912-20. PubMed ID: 16316237 [TBL] [Abstract][Full Text] [Related]
7. Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,3,5-triazine) by zero valent iron and electrochemical reduction. Dombek T; Davis D; Stine J; Klarup D Environ Pollut; 2004 May; 129(2):267-75. PubMed ID: 14987812 [TBL] [Abstract][Full Text] [Related]
8. Role of linkers in tertiary amines that mediate or catalyze 1,3,5-triazine-based amide-forming reactions. Kitamura M; Kawasaki F; Ogawa K; Nakanishi S; Tanaka H; Yamada K; Kunishima M J Org Chem; 2014 Apr; 79(8):3709-14. PubMed ID: 24650172 [TBL] [Abstract][Full Text] [Related]
9. A novel generation of coupling reagents. Enantiodifferentiating coupling reagents prepared in situ from 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and chiral tertiary amines. Kamiński ZJ; Kolesińska B; Kamińska JE; Góra J J Org Chem; 2001 Sep; 66(19):6276-81. PubMed ID: 11559174 [TBL] [Abstract][Full Text] [Related]
10. Imido-substituted triazines as dehydrative condensing reagents for the chemoselective formation of amides in the presence of free hydroxy groups. Kitamura M; Sasaki S; Nishikawa R; Yamada K; Kunishima M RSC Adv; 2018 Jun; 8(40):22482-22489. PubMed ID: 35539751 [TBL] [Abstract][Full Text] [Related]
11. Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids. Zarecki AP; Kolanowski JL; Markiewicz WT Molecules; 2020 Apr; 25(8):. PubMed ID: 32290373 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and Antimicrobial Evaluation of Bis-morpholine Triazine Quaternary Ammonium Salts. Morandini A; Leonetti B; Riello P; Sole R; Gatto V; Caligiuri I; Rizzolio F; Beghetto V ChemMedChem; 2021 Oct; 16(20):3172-3176. PubMed ID: 34288499 [TBL] [Abstract][Full Text] [Related]
13. [Studies on reaction control and development of new practical reagents based on characteristics of reaction field]. Kunishima M Yakugaku Zasshi; 2008 Mar; 128(3):425-38. PubMed ID: 18311063 [TBL] [Abstract][Full Text] [Related]
14. Profiling of chiral and achiral carboxylic acid metabolomics: synthesis and evaluation of triazine-type chiral derivatization reagents for carboxylic acids by LC-ESI-MS/MS and the application to saliva of healthy volunteers and diabetic patients. Takayama T; Kuwabara T; Maeda T; Noge I; Kitagawa Y; Inoue K; Todoroki K; Min JZ; Toyo'oka T Anal Bioanal Chem; 2015 Jan; 407(3):1003-14. PubMed ID: 25366977 [TBL] [Abstract][Full Text] [Related]
15. Chiral Metabolomics Using Triazine-Based Chiral Labeling Reagents by UPLC-ESI-MS/MS. Toyo'oka T Methods Mol Biol; 2019; 1985():57-79. PubMed ID: 31069729 [TBL] [Abstract][Full Text] [Related]
16. Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides. Ghosh SC; Ngiam JS; Seayad AM; Tuan DT; Chai CL; Chen A J Org Chem; 2012 Sep; 77(18):8007-15. PubMed ID: 22894712 [TBL] [Abstract][Full Text] [Related]
17. One-pot mechanosynthesis of aromatic amides and dipeptides from carboxylic acids and amines. Štrukil V; Bartolec B; Portada T; Đilović I; Halasz I; Margetić D Chem Commun (Camb); 2012 Dec; 48(99):12100-2. PubMed ID: 23135220 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric direct amide synthesis by kinetic amine resolution: a chiral bifunctional aminoboronic acid catalyzed reaction between a racemic amine and an achiral carboxylic acid. Arnold K; Davies B; Hérault D; Whiting A Angew Chem Int Ed Engl; 2008; 47(14):2673-6. PubMed ID: 18306200 [No Abstract] [Full Text] [Related]
19. Synthesis of pulvinic derivatives via TBAF-mediated regioselective opening of an unsymmetrical monoaromatic pulvinic dilactone. Habrant D; Le Roux A; Poigny S; Meunier S; Wagner A; Mioskowski C J Org Chem; 2008 Dec; 73(23):9490-3. PubMed ID: 19007182 [TBL] [Abstract][Full Text] [Related]
20. New methodology for automated SPOT synthesis of peptides on cellulose using 1,3,5-triazine derivatives as linkers and as coupling reagents. Fraczyk J; Walczak M; Kaminski ZJ J Pept Sci; 2018 Feb; 24(2):. PubMed ID: 29436154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]