These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33401774)

  • 41. Loss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid species.
    Kolanowska M
    Sci Rep; 2023 Apr; 13(1):6848. PubMed ID: 37100884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ecological niche modeling of the pantropical orchid Polystachya concreta (Orchidaceae) and its response to climate change.
    Kolanowska M; Rewicz A; Baranow P
    Sci Rep; 2020 Sep; 10(1):14801. PubMed ID: 32908206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perspectives on orchid conservation in botanic gardens.
    Swarts ND; Dixon KW
    Trends Plant Sci; 2009 Nov; 14(11):590-8. PubMed ID: 19733499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current and future effects of global change on a hotspot's freshwater diversity.
    Gallardo B; Bogan AE; Harun S; Jainih L; Lopes-Lima M; Pizarro M; Rahim KA; Sousa R; Virdis SGP; Zieritz A
    Sci Total Environ; 2018 Sep; 635():750-760. PubMed ID: 29680765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of orchids to habitat change in Corsica over 27 years.
    Vogt-Schilb H; Pradel R; Geniez P; Hugot L; Delage A; Richard F; Schatz B
    Ann Bot; 2016 Jul; 118(1):115-23. PubMed ID: 27302932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of drivers of landscape distribution of forest orchids using germination experiment and species distribution models.
    Hemrová L; Kotilínek M; Konečná M; Paulič R; Jersáková J; Těšitelová T; Knappová J; Münzbergová Z
    Oecologia; 2019 Jun; 190(2):411-423. PubMed ID: 31154510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures.
    Friggens MM; Finch DM
    PLoS One; 2015; 10(12):e0144089. PubMed ID: 26700871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the Alps.
    Rehnus M; Bollmann K; Schmatz DR; Hackländer K; Braunisch V
    Glob Chang Biol; 2018 Jul; 24(7):3236-3253. PubMed ID: 29532601
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulation of potential habitat overlap between red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in northeastern China.
    Wu W; Li Y; Hu Y
    PeerJ; 2016; 4():e1756. PubMed ID: 27019775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of Conservation Priority Areas and a Protection Network for the Siberian Musk Deer (
    Zhang C; Fan Y; Chen M; Xia W; Wang J; Zhan Z; Wang W; Khan TU; Wu S; Luan X
    Animals (Basel); 2022 Jan; 12(3):. PubMed ID: 35158586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mycorrhizal specificity, preference, and plasticity of six slipper orchids from South Western China.
    Yuan L; Yang ZL; Li SY; Hu H; Huang JL
    Mycorrhiza; 2010 Nov; 20(8):559-68. PubMed ID: 20217434
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An ecophysiological perspective on likely giant panda habitat responses to climate change.
    Zhang Y; Mathewson PD; Zhang Q; Porter WP; Ran J
    Glob Chang Biol; 2018 Apr; 24(4):1804-1816. PubMed ID: 29251797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China.
    Zhang SB; Chen WY; Huang JL; Bi YF; Yang XF
    PLoS One; 2015; 10(11):e0142621. PubMed ID: 26555336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling future wildlife habitat suitability: serious climate change impacts on the potential distribution of the Rock Ptarmigan Lagopus muta japonica in Japan's northern Alps.
    Hotta M; Tsuyama I; Nakao K; Ozeki M; Higa M; Kominami Y; Hamada T; Matsui T; Yasuda M; Tanaka N
    BMC Ecol; 2019 Jul; 19(1):23. PubMed ID: 31288795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Species range shifts in response to climate change and human pressure for the world's largest amphibian.
    Zhang P; Dong X; Grenouillet G; Lek S; Zheng Y; Chang J
    Sci Total Environ; 2020 Sep; 735():139543. PubMed ID: 32485455
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent Fragmentation May Not Alter Genetic Patterns in Endangered Long-Lived Species: Evidence From
    Su J; Yan Y; Song J; Li J; Mao J; Wang N; Wang W; Du FK
    Front Plant Sci; 2018; 9():1571. PubMed ID: 30429863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential Distribution of Amphibians with Different Habitat Characteristics in Response to Climate Change in South Korea.
    Kim HW; Adhikari P; Chang MH; Seo C
    Animals (Basel); 2021 Jul; 11(8):. PubMed ID: 34438643
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis.
    Li J; Fan G; He Y
    Sci Total Environ; 2020 Jan; 698():134141. PubMed ID: 31505366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Orchid conservation in China from 2000 to 2020: Achievements and perspectives.
    Zhou Z; Shi R; Zhang Y; Xing X; Jin X
    Plant Divers; 2021 Oct; 43(5):343-349. PubMed ID: 34816060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Suitable habitat modelling using GIS for orchids in the Black Sea Region (North of Turkey).
    Akbulut MK; Süngü Şeker Ş; Everest T; Şenel G
    Environ Monit Assess; 2021 Dec; 193(12):853. PubMed ID: 34851426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.