BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33402050)

  • 1. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities.
    de Vries AW; Krause F; de Looze MP
    Ergonomics; 2021 Jun; 64(6):712-721. PubMed ID: 33402050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks.
    Kong YK; Kim JH; Shim HH; Shim JW; Park SS; Choi KH
    Appl Ergon; 2023 May; 109():103965. PubMed ID: 36645995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a spring-loaded upper-limb exoskeleton in cleaning activities.
    Pacifico I; Aprigliano F; Parri A; Cannillo G; Melandri I; Sabatini AM; Violante FS; Molteni F; Giovacchini F; Vitiello N; Crea S
    Appl Ergon; 2023 Jan; 106():103877. PubMed ID: 36095895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field study on the use and acceptance of an arm support exoskeleton in plastering.
    de Vries AW; Baltrusch SJ; de Looze MP
    Ergonomics; 2023 Oct; 66(10):1622-1632. PubMed ID: 36546707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System.
    Kong YK; Choi KH; Cho MU; Kim SY; Kim MJ; Shim JW; Park SS; Kim KR; Seo MT; Chae HS; Shim HH
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three passive arm-support exoskeletons have inconsistent effects on muscle activity, posture, and perceived exertion during diverse simulated pseudo-static overhead nutrunning tasks.
    Ojelade A; Morris W; Kim S; Kelson D; Srinivasan D; Smets M; Nussbaum MA
    Appl Ergon; 2023 Jul; 110():104015. PubMed ID: 36933418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guidelines for Working Heights of the Lower-Limb Exoskeleton (CEX) Based on Ergonomic Evaluations.
    Kong YK; Park CW; Cho MU; Kim SY; Kim MJ; Hyun DJ; Bae K; Choi JK; Ko SM; Choi KH
    Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34068352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of an exoskeleton on muscle activity in tasks requiring arm elevation: Part I - Experiments in a controlled laboratory setting.
    Mänttäri S; Rauttola AP; Halonen J; Karkulehto J; Säynäjäkangas P; Oksa J
    Work; 2024; 77(4):1179-1188. PubMed ID: 37980590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a passive exoskeleton for static upper limb activities.
    Huysamen K; Bosch T; de Looze M; Stadler KS; Graf E; O'Sullivan LW
    Appl Ergon; 2018 Jul; 70():148-155. PubMed ID: 29866305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a passive upper extremity exoskeleton for overhead tasks.
    Yin P; Yang L; Qu S; Wang C
    J Electromyogr Kinesiol; 2020 Dec; 55():102478. PubMed ID: 33075712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks.
    Musso M; Oliveira AS; Bai S
    Appl Ergon; 2024 Jan; 114():104158. PubMed ID: 37890312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions.
    Kong YK; Park SS; Shim JW; Choi KH; Shim HH; Kia K; Kim JH
    Appl Ergon; 2023 May; 109():103982. PubMed ID: 36739780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant.
    Iranzo S; Piedrabuena A; Iordanov D; Martinez-Iranzo U; Belda-Lois JM
    Appl Ergon; 2020 Sep; 87():103120. PubMed ID: 32310110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Int J Environ Res Public Health; 2023 Jul; 20(15):. PubMed ID: 37569010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arm-support exoskeleton reduces shoulder muscle activity in ceiling construction.
    Baltrusch SJ; Krause F; de Vries AW; de Looze MP
    Ergonomics; 2023 Nov; ():1-13. PubMed ID: 37938880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a passive arm-support exoskeleton for surgical team members: Results from live surgeries.
    Cha JS; Athanasiadis DI; Asadi H; Stefanidis D; Nussbaum MA; Yu D
    J Safety Res; 2024 Jun; 89():322-330. PubMed ID: 38858056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of passive exoskeleton support on EMG measures of the neck, shoulder and trunk muscles while holding simulated surgical postures and performing a simulated surgical procedure.
    Tetteh E; Hallbeck MS; Mirka GA
    Appl Ergon; 2022 Apr; 100():103646. PubMed ID: 34847371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shoulder muscle activity and perceived comfort of industry workers using a commercial upper limb exoskeleton for simulated tasks.
    Pinho JP; Forner-Cordero A
    Appl Ergon; 2022 May; 101():103718. PubMed ID: 35202960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a passive shoulder exoskeleton on muscle activity among Danish slaughterhouse workers.
    Dalbøge A; Frost J; Grytnes R; Roy JS; Samani A; Høyrup Christiansen D
    Appl Ergon; 2024 Jan; 114():104111. PubMed ID: 37611536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.