These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33402068)

  • 1. The most efficient metazoan swimmer creates a 'virtual wall' to enhance performance.
    Gemmell BJ; Du Clos KT; Colin SP; Sutherland KR; Costello JH
    Proc Biol Sci; 2021 Jan; 288(1942):20202494. PubMed ID: 33402068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jet-paddling jellies: swimming performance in the Rhizostomeae jellyfish
    Neil TR; Askew GN
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30348647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses.
    Dabiri JO; Colin SP; Costello JH; Gharib M
    J Exp Biol; 2005 Apr; 208(Pt 7):1257-65. PubMed ID: 15781886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans.
    Gemmell BJ; Costello JH; Colin SP; Stewart CJ; Dabiri JO; Tafti D; Priya S
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17904-9. PubMed ID: 24101461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring vortex enhancement and manipulation mechanisms in jellyfish that contributes to energetically efficient propulsion.
    Gemmell BJ; Costello JH; Colin SP
    Commun Integr Biol; 2014; 7():e29014. PubMed ID: 25346796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ctenophore (comb jelly) employs vortex rebound dynamics and outperforms other gelatinous swimmers.
    Gemmell BJ; Colin SP; Costello JH; Sutherland KR
    R Soc Open Sci; 2019 Mar; 6(3):181615. PubMed ID: 31032019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Hydrodynamics of Jellyfish Swimming.
    Costello JH; Colin SP; Dabiri JO; Gemmell BJ; Lucas KN; Sutherland KR
    Ann Rev Mar Sci; 2021 Jan; 13():375-396. PubMed ID: 32600216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of vortex rings for manoeuvrability.
    Gemmell BJ; Troolin DR; Costello JH; Colin SP; Satterlie RA
    J R Soc Interface; 2015 Jul; 12(108):20150389. PubMed ID: 26136226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible margin kinematics and vortex formation of Aurelia aurita and Robojelly.
    Villanueva A; Vlachos P; Priya S
    PLoS One; 2014; 9(6):e98310. PubMed ID: 24905025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A resonant squid-inspired robot unlocks biological propulsive efficiency.
    Bujard T; Giorgio-Serchi F; Weymouth GD
    Sci Robot; 2021 Jan; 6(50):. PubMed ID: 34043579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suction-based propulsion as a basis for efficient animal swimming.
    Gemmell BJ; Colin SP; Costello JH; Dabiri JO
    Nat Commun; 2015 Nov; 6():8790. PubMed ID: 26529342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita).
    McHenry MJ; Jed J
    J Exp Biol; 2003 Nov; 206(Pt 22):4125-37. PubMed ID: 14555752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.
    Bartol IK; Krueger PS; Jastrebsky RA; Williams S; Thompson JT
    J Exp Biol; 2016 Feb; 219(Pt 3):392-403. PubMed ID: 26643088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish.
    Santhanakrishnan A; Dollinger M; Hamlet CL; Colin SP; Miller LA
    J Exp Biol; 2012 Jul; 215(Pt 14):2369-81. PubMed ID: 22723475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsteady flow field around a human hand and propulsive force in swimming.
    Matsuuchi K; Miwa T; Nomura T; Sakakibara J; Shintani H; Ungerechts BE
    J Biomech; 2009 Jan; 42(1):42-7. PubMed ID: 19054519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping of swimmers in a vortex lattice.
    Berman SA; Mitchell KA
    Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria.
    Sahin M; Mohseni K; Colin SP
    J Exp Biol; 2009 Aug; 212(Pt 16):2656-67. PubMed ID: 19648411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.