These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 33403122)
1. An open source graphical user interface for wireless communication and operation of wearable robotic technology. Tucker LA; Chen J; Hammel L; Damiano DL; Bulea TC J Rehabil Assist Technol Eng; 2020; 7():2055668320964056. PubMed ID: 33403122 [TBL] [Abstract][Full Text] [Related]
2. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension. Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297 [TBL] [Abstract][Full Text] [Related]
3. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation. Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846 [TBL] [Abstract][Full Text] [Related]
4. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. Louie DR; Eng JJ J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136 [TBL] [Abstract][Full Text] [Related]
5. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove. Ben-Tzvi P; Ma Z IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512 [TBL] [Abstract][Full Text] [Related]
6. User satisfaction with lower limb wearable robotic exoskeletons. Poritz JMP; Taylor HB; Francisco G; Chang SH Disabil Rehabil Assist Technol; 2020 Apr; 15(3):322-327. PubMed ID: 30786789 [No Abstract] [Full Text] [Related]
7. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants. Pinheiro C; Figueiredo J; Magalhães N; Santos CP Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845 [TBL] [Abstract][Full Text] [Related]
8. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
9. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design. Anderson A; Richburg C; Czerniecki J; Aubin P IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656 [TBL] [Abstract][Full Text] [Related]
10. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354 [TBL] [Abstract][Full Text] [Related]
11. Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification. Tortora S; Tonin L; Sieghartsleitner S; Ortner R; Guger C; Lennon O; Coyle D; Menegatti E; Felice AD IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2988-3003. PubMed ID: 37432820 [TBL] [Abstract][Full Text] [Related]
12. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability. Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159 [TBL] [Abstract][Full Text] [Related]
14. Exoskeleton use in post-stroke gait rehabilitation: a qualitative study of the perspectives of persons post-stroke and physiotherapists. Vaughan-Graham J; Brooks D; Rose L; Nejat G; Pons J; Patterson K J Neuroeng Rehabil; 2020 Sep; 17(1):123. PubMed ID: 32912215 [TBL] [Abstract][Full Text] [Related]
16. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety. Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678 [TBL] [Abstract][Full Text] [Related]
17. Effect of wearable exoskeleton on post-stroke gait: A systematic review and meta-analysis. Hsu TH; Tsai CL; Chi JY; Hsu CY; Lin YN Ann Phys Rehabil Med; 2023 Feb; 66(1):101674. PubMed ID: 35525427 [TBL] [Abstract][Full Text] [Related]
18. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065 [TBL] [Abstract][Full Text] [Related]
19. Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices. Yandell MB; Quinlivan BT; Popov D; Walsh C; Zelik KE J Neuroeng Rehabil; 2017 May; 14(1):40. PubMed ID: 28521803 [TBL] [Abstract][Full Text] [Related]
20. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]