These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33403244)

  • 1. A Learned Reconstruction Network for SPECT Imaging.
    Shao W; Pomper MG; Du Y
    IEEE Trans Radiat Plasma Med Sci; 2021 Jan; 5(1):26-34. PubMed ID: 33403244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPECTnet: a deep learning neural network for SPECT image reconstruction.
    Shao W; Rowe SP; Du Y
    Ann Transl Med; 2021 May; 9(9):819. PubMed ID: 34268432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of 180 degrees and 360 degrees acquisition for attenuation-compensated thallium-201 SPECT images.
    LaCroix KJ; Tsui BM; Hasegawa BH
    J Nucl Med; 1998 Mar; 39(3):562-74. PubMed ID: 9529312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution reconstruction for parallel-beam SPECT based on deep learning and transfer learning: a preliminary simulation study.
    Cheng Z; Wen J; Zhang J; Yan J
    Ann Transl Med; 2022 Apr; 10(7):396. PubMed ID: 35530942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infimal convolution-based regularization for SPECT reconstruction.
    Zhang J; Li S; Krol A; Schmidtlein CR; Lipson E; Feiglin D; Xu Y
    Med Phys; 2018 Dec; 45(12):5397-5410. PubMed ID: 30291718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial neural network for SPECT image reconstruction.
    Floyd CR
    IEEE Trans Med Imaging; 1991; 10(3):485-7. PubMed ID: 18222852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions.
    Grootjans W; Meeuwis AP; Slump CH; de Geus-Oei LF; Gotthardt M; Visser EP
    Z Med Phys; 2016 Dec; 26(4):311-322. PubMed ID: 26725165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound transmission tomography image reconstruction with a fully convolutional neural network.
    Zhao W; Wang H; Gemmeke H; van Dongen KWA; Hopp T; Hesser J
    Phys Med Biol; 2020 Nov; 65(23):235021. PubMed ID: 33245050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A projection image database to investigate factors affecting image quality in weight-based dosing: application to pediatric renal SPECT.
    Li Y; O'Reilly S; Plyku D; Treves ST; Du Y; Fahey F; Cao X; Jha AK; Sgouros G; Bolch WE; Frey EC
    Phys Med Biol; 2018 Jul; 63(14):145004. PubMed ID: 29893291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A truth-based primal-dual learning approach to reconstruct CT images utilizing the virtual imaging trial platform.
    Zarei M; Sotoudeh-Paima S; Abadi E; Samei E
    Proc SPIE Int Soc Opt Eng; 2022; 12031():. PubMed ID: 35574204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural network approach for image reconstruction in electron magnetic resonance tomography.
    Durairaj DC; Krishna MC; Murugesan R
    Comput Biol Med; 2007 Oct; 37(10):1492-501. PubMed ID: 17362904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPECT Imaging of 2-D and 3-D Distributed Sources with Near-Field Coded Aperture Collimation: Computer Simulation and Real Data Validation.
    Mu Z; Dobrucki LW; Liu YH
    J Med Biol Eng; 2016; 36():32-43. PubMed ID: 27069461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective noise-suppressed and artifact-reduced reconstruction of SPECT data using a preconditioned alternating projection algorithm.
    Li S; Zhang J; Krol A; Schmidtlein CR; Vogelsang L; Shen L; Lipson E; Feiglin D; Xu Y
    Med Phys; 2015 Aug; 42(8):4872-87. PubMed ID: 26233214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: a simulation study.
    Yokoi T; Shinohara H; Onishi H
    Ann Nucl Med; 2002 Feb; 16(1):11-8. PubMed ID: 11922203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.
    Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K
    Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem.
    Häggström I; Schmidtlein CR; Campanella G; Fuchs TJ
    Med Image Anal; 2019 May; 54():253-262. PubMed ID: 30954852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of 180 degrees and 360 degrees acquisition for myocardial perfusion SPECT with compensation for attenuation, detector response, and scatter: Monte Carlo and mathematical observer results.
    He X; Links JM; Gilland KL; Tsui BM; Frey EC
    J Nucl Cardiol; 2006; 13(3):345-53. PubMed ID: 16750779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photon Counting Computed Tomography With Dedicated Sharp Convolution Kernels: Tapping the Potential of a New Technology for Stent Imaging.
    von Spiczak J; Mannil M; Peters B; Hickethier T; Baer M; Henning A; Schmidt B; Flohr T; Manka R; Maintz D; Alkadhi H
    Invest Radiol; 2018 Aug; 53(8):486-494. PubMed ID: 29794949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.