BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33403267)

  • 21. Extreme Heat Shielding of Clay/Chitosan Nanobrick Wall on Flexible Foam.
    Lazar S; Carosio F; Davesne AL; Jimenez M; Bourbigot S; Grunlan J
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31686-31696. PubMed ID: 30148595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fire behavior of innovative alginate foams.
    Vincent T; Vincent C; Dumazert L; Otazaghine B; Sonnier R; Guibal E
    Carbohydr Polym; 2020 Dec; 250():116910. PubMed ID: 33049885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Melamine Polyphosphate - the Reactive and Additive Flame Retardant for Polyurethane Foams.
    Lubczak J; Lubczak R
    Acta Chim Slov; 2016; 63(1):77-87. PubMed ID: 26970791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel Nitrogen-Phosphorus Flame Retardant Based on Phosphonamidate: Thermal Stability and Flame Retardancy.
    Vothi H; Nguyen C; Pham LH; Hoang D; Kim J
    ACS Omega; 2019 Oct; 4(18):17791-17797. PubMed ID: 31681885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A case for closed-loop recycling of post-consumer PET for automotive foams.
    Bedell M; Brown M; Kiziltas A; Mielewski D; Mukerjee S; Tabor R
    Waste Manag; 2018 Jan; 71():97-108. PubMed ID: 29113836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Poly(lactide-urethane-isocyanurate) Foams Based on Bio-Polylactide Waste.
    Paciorek-Sadowska J; Borowicz M; Isbrandt M
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol.
    Kiss G; Rusu G; Bandur G; Hulka I; Romecki D; Péter F
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation.
    Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol.
    de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. It Takes Two to Tango: Synergistic Expandable Graphite-Phosphorus Flame Retardant Combinations in Polyurethane Foams.
    Chan YY; Schartel B
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recycling of Flexible Polyurethane Foams by Regrinding Scraps into Powder to Replace Polyol for Re-Foaming.
    Guo L; Wang W; Guo X; Hao K; Liu H; Xu Y; Liu G; Guo S; Bai L; Ren D; Liu F
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fractionated lignin as a polyol in polyurethane fabrication.
    Li C; Jin H; Hou M; Guo X; Xiao T; Cao X; Jia W; Fatehi P; Shi H
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128290. PubMed ID: 37992926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel Dihydroxy-Containing Ammonium Phosphate Based Poly(Lactic Acid): Synthesis, Characterization and Flame Retardancy.
    Jian RK; Xia L; Ai YF; Wang DY
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties.
    Kairytė A; Kremensas A; Balčiūnas G; Członka S; Strąkowska A
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32245242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Results from Screening Polyurethane Foam Based Consumer Products for Flame Retardant Chemicals: Assessing Impacts on the Change in the Furniture Flammability Standards.
    Cooper EM; Kroeger G; Davis K; Clark CR; Ferguson PL; Stapleton HM
    Environ Sci Technol; 2016 Oct; 50(19):10653-10660. PubMed ID: 27552529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobic Polyurethane Foam Coated with Polysiloxane-Modified Clay Nanotubes for Efficient and Recyclable Oil Absorption.
    Wu F; Pickett K; Panchal A; Liu M; Lvov Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25445-25456. PubMed ID: 31260242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil.
    Kurańska M; Barczewski R; Barczewski M; Prociak A; Polaczek K
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanochemical Recycling of Flexible Polyurethane Foam Scraps for Quantitative Replacement of Polyol Using Wedge-Block-Reinforced Extruder.
    Guo L; Wang F; Chai H; Liu G; Jian X; Zhao J; Liu K; Liu H; Liu T; Zhang X; Wang Y; Liu F
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organoclay nanocomposites of post-industrial waste poly(butylene terephthalate) from automotive parts.
    Quispe NB; Fernandes EG; Zanata F; Bartoli JR; Souza DH; Ito EN
    Waste Manag Res; 2015 Oct; 33(10):908-18. PubMed ID: 26341637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One More Step towards a Circular Economy for Thermal Insulation Materials-Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry.
    Kowalczyk Ł; Korol J; Chmielnicki B; Laska A; Chuchala D; Hejna A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.