These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

760 related articles for article (PubMed ID: 33403451)

  • 1. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers.
    Amirghasemi F; Adjei-Sowah E; Pockaj BA; Nikkhah M
    Ann Biomed Eng; 2021 Aug; 49(8):1943-1972. PubMed ID: 33403451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis.
    Peela N; Truong D; Saini H; Chu H; Mashaghi S; Ham SL; Singh S; Tavana H; Mosadegh B; Nikkhah M
    Biomaterials; 2017 Jul; 133():176-207. PubMed ID: 28437628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment.
    Portillo-Lara R; Annabi N
    Lab Chip; 2016 Oct; 16(21):4063-4081. PubMed ID: 27605305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip anticancer drug screening - Recent progress in microfluidic platforms to address challenges in chemotherapy.
    Dhiman N; Kingshott P; Sumer H; Sharma CS; Rath SN
    Biosens Bioelectron; 2019 Jul; 137():236-254. PubMed ID: 31121461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microengineered Organ-on-a-chip Platforms towards Personalized Medicine.
    Kankala RK; Wang SB; Chen AZ
    Curr Pharm Des; 2018; 24(45):5354-5366. PubMed ID: 30799783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing.
    Fernandes DC; Canadas RF; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():137-159. PubMed ID: 32285369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking
    Jo Y; Choi N; Kim K; Koo HJ; Choi J; Kim HN
    Theranostics; 2018; 8(19):5259-5275. PubMed ID: 30555545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Could 3D models of cancer enhance drug screening?
    Brancato V; Oliveira JM; Correlo VM; Reis RL; Kundu SC
    Biomaterials; 2020 Feb; 232():119744. PubMed ID: 31918229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput CRISPR-mediated 3D enrichment platform for functional interrogation of chemotherapeutic resistance.
    Grandhi TSP; To J; Romero A; Luna F; Barnes W; Walker J; Moran R; Newlin R; Miraglia L; Orth AP; Horman SR
    Biotechnol Bioeng; 2021 Aug; 118(8):3187-3199. PubMed ID: 34050941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.
    Daher A; de Groot J
    Exp Neurol; 2018 Jan; 299(Pt B):281-288. PubMed ID: 28923369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Cancer Cell Invasion and Anti-metastatic Drug Screening Using Hydrogel Micro-chamber Array (HMCA)-based Plates.
    Ravid-Hermesh O; Zurgil N; Shafran Y; Afrimzon E; Sobolev M; Hakuk Y; Bar-On Eizig Z; Deutsch M
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30417872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Tumor Models on Chip and Integrated Microphysiological Analysis Platform (MAP) for Life Sciences and High-Throughput Drug Screening.
    Ngo H; Amartumur S; Tran VTA; Tran M; Diep YN; Cho H; Lee LP
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Biomimetic Models to Reconstitute Tumor Microenvironment In Vitro: Spheroids, Organoids, and Tumor-on-a-Chip.
    Li W; Zhou Z; Zhou X; Khoo BL; Gunawan R; Chin YR; Zhang L; Yi C; Guan X; Yang M
    Adv Healthc Mater; 2023 Jul; 12(18):e2202609. PubMed ID: 36917657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast cancer models: Engineering the tumor microenvironment.
    Bahcecioglu G; Basara G; Ellis BW; Ren X; Zorlutuna P
    Acta Biomater; 2020 Apr; 106():1-21. PubMed ID: 32045679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging tumor spheroids technologies for 3D in vitro cancer modeling.
    Rodrigues T; Kundu B; Silva-Correia J; Kundu SC; Oliveira JM; Reis RL; Correlo VM
    Pharmacol Ther; 2018 Apr; 184():201-211. PubMed ID: 29097309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication Method of a High-Density Co-Culture Tumor-Stroma Platform to Study Cancer Progression.
    Saini H; Nikkhah M
    Methods Mol Biol; 2021; 2258():241-255. PubMed ID: 33340365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-bioprinted all-inclusive bioanalytical platforms for cell studies.
    Mazrouei R; Velasco V; Esfandyarpour R
    Sci Rep; 2020 Sep; 10(1):14669. PubMed ID: 32887912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic 3D models of cancer.
    Sung KE; Beebe DJ
    Adv Drug Deliv Rev; 2014 Dec; 79-80():68-78. PubMed ID: 25017040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.