These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 33403575)
1. Changes in Serum Physiological and Biochemical Parameters of Male Swiss Albino Mice After Oral Administration of Metal Oxide Nanoparticles (ZnO, CuO, and ZnO+CuO). Kargin D Biol Trace Elem Res; 2021 Nov; 199(11):4218-4224. PubMed ID: 33403575 [TBL] [Abstract][Full Text] [Related]
2. Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds. Singh D; Kumar A Environ Monit Assess; 2019 Oct; 191(11):703. PubMed ID: 31673860 [TBL] [Abstract][Full Text] [Related]
3. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Mwaanga P; Carraway ER; van den Hurk P Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179 [TBL] [Abstract][Full Text] [Related]
4. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Dimkpa CO; McLean JE; Britt DW; Anderson AJ Ecotoxicology; 2015 Jan; 24(1):119-29. PubMed ID: 25297564 [TBL] [Abstract][Full Text] [Related]
5. Gene transcription patterns and energy reserves in Daphnia magna show no nanoparticle specific toxicity when exposed to ZnO and CuO nanoparticles. Adam N; Vergauwen L; Blust R; Knapen D Environ Res; 2015 Apr; 138():82-92. PubMed ID: 25704829 [TBL] [Abstract][Full Text] [Related]
6. CuO, ZnO, and γ-Fe Wei X; Cao P; Wang G; Liu Y; Song J; Han J Ecotoxicol Environ Saf; 2021 Jul; 217():112232. PubMed ID: 33864980 [TBL] [Abstract][Full Text] [Related]
7. Application of low dosage of copper oxide and zinc oxide nanoparticles boosts bacterial and fungal communities in soil. Liu Y; Li Y; Pan B; Zhang X; Zhang H; Steinberg CEW; Qiu H; Vijver MG; Peijnenburg WJGM Sci Total Environ; 2021 Feb; 757():143807. PubMed ID: 33288254 [TBL] [Abstract][Full Text] [Related]
8. Weight-of-evidence process for assessing human health risk of mixture of metal oxide nanoparticles and corresponding ions in aquatic matrices. Parsai T; Kumar A Chemosphere; 2021 Jan; 263():128289. PubMed ID: 33297232 [TBL] [Abstract][Full Text] [Related]
9. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Adam N; Leroux F; Knapen D; Bals S; Blust R Water Res; 2015 Jan; 68():249-61. PubMed ID: 25462733 [TBL] [Abstract][Full Text] [Related]
10. Quantification of metal uptake in Spinacia oleracea irrigated with water containing a mixture of CuO and ZnO nanoparticles. Singh D; Kumar A Chemosphere; 2020 Mar; 243():125239. PubMed ID: 31733544 [TBL] [Abstract][Full Text] [Related]
11. Time-Dependent Toxicity Responses in Daphnia magna Exposed to CuO and ZnO Nanoparticles. Kim S; Samanta P; Yoo J; Kim WK; Jung J Bull Environ Contam Toxicol; 2017 Apr; 98(4):502-507. PubMed ID: 28078368 [TBL] [Abstract][Full Text] [Related]
12. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Minigalieva IA; Katsnelson BA; Panov VG; Privalova LI; Varaksin AN; Gurvich VB; Sutunkova MP; Shur VY; Shishkina EV; Valamina IE; Zubarev IV; Makeyev OH; Meshtcheryakova EY; Klinova SV Toxicology; 2017 Apr; 380():72-93. PubMed ID: 28212817 [TBL] [Abstract][Full Text] [Related]
13. Integrative chemical, physiological, and metabolomics analyses reveal nanospecific phytotoxicity of metal nanoparticles. Wu P; Wang Z; Adusei-Fosu K; Wang Y; Wang H; Li X J Environ Manage; 2024 Mar; 354():120338. PubMed ID: 38401494 [TBL] [Abstract][Full Text] [Related]
14. Toxicity assessment and comparison of the land snail's Cornu aspersum responses against CuO nanoparticles and ZnO nanoparticles. Feidantsis K; Kalogiannis S; Marinoni A; Vasilogianni AM; Gkanatsiou C; Kastrinaki G; Dendrinou-Samara C; Kaloyianni M Comp Biochem Physiol C Toxicol Pharmacol; 2020 Oct; 236():108817. PubMed ID: 32502603 [TBL] [Abstract][Full Text] [Related]
15. Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil. Ahmed B; Rizvi A; Syed A; Jailani A; Elgorban AM; Khan MS; Al-Shwaiman HA; Lee J Environ Pollut; 2021 Nov; 289():117854. PubMed ID: 34333267 [TBL] [Abstract][Full Text] [Related]
16. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Baek YW; An YJ Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial Activity Comparison of Three Metal Oxide Nanoparticles and their Dissolved Metal Ions. Qin Q; Li J; Wang J Water Environ Res; 2017 Apr; 89(4):378-383. PubMed ID: 28377007 [TBL] [Abstract][Full Text] [Related]
18. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Dimkpa CO; Zeng J; McLean JE; Britt DW; Zhan J; Anderson AJ Appl Environ Microbiol; 2012 Mar; 78(5):1404-10. PubMed ID: 22210218 [TBL] [Abstract][Full Text] [Related]
19. Differential responses of maize (Zea mays) at the physiological, biomolecular, and nutrient levels when cultivated in the presence of nano or bulk ZnO or CuO or Zn Ahmed B; Rizvi A; Syed A; Elgorban AM; Khan MS; Al-Shwaiman HA; Musarrat J; Lee J J Hazard Mater; 2021 Oct; 419():126493. PubMed ID: 34323709 [TBL] [Abstract][Full Text] [Related]
20. Acaricidal Efficacy of Biosynthesized Zinc Oxide Nanoparticles Against Hyalomma dromedarii (Acari: Ixodidae) and Their Toxic Effects on Swiss Albino Mice. Abdel-Ghany HSM; Abdel-Shafy S; Abuowarda MM; El-Khateeb RM; Hoballah EM; Fahmy MM Acta Parasitol; 2022 Jun; 67(2):878-891. PubMed ID: 35316482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]