BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33403792)

  • 21. Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience.
    So A; Lee TY; Imai Y; Narayanan S; Hsieh J; Kramer J; Procknow K; Leipsic J; Labounty T; Min J
    J Cardiovasc Comput Tomogr; 2011; 5(6):430-42. PubMed ID: 22146502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion.
    Lin Y; Samei E
    Med Phys; 2014 Feb; 41(2):021911. PubMed ID: 24506632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of multi-contrast imaging on dual-source photon counting detector (PCD) CT: An initial phantom study.
    Tao S; Rajendran K; McCollough CH; Leng S
    Med Phys; 2019 Sep; 46(9):4105-4115. PubMed ID: 31215659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Technical Note: Quantitative accuracy evaluation for spectral images from a detector-based spectral CT scanner using an iodine phantom.
    Duan X; Arbique G; Guild J; Xi Y; Anderson J
    Med Phys; 2018 May; 45(5):2048-2053. PubMed ID: 29479712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.
    Shikhaliev PM
    Phys Med Biol; 2012 Mar; 57(6):1595-615. PubMed ID: 22398007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative accuracy and dose efficiency of dual-contrast imaging using dual-energy CT: a phantom study.
    Ren L; Rajendran K; McCollough CH; Yu L
    Med Phys; 2020 Feb; 47(2):441-456. PubMed ID: 31705664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of image quality and accuracy of low iodine concentration quantification as function of kVp pairs for abdominal imaging using dual-source CT: A phantom study.
    Dabli D; Frandon J; Hamard A; Belaouni A; Addala T; Beregi JP; Greffier J
    Phys Med; 2021 Aug; 88():285-292. PubMed ID: 34358863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.
    Atak H; Shikhaliev PM
    Med Phys; 2016 Mar; 43(3):1385-400. PubMed ID: 26936723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral CT imaging of vulnerable plaque with two independent biomarkers.
    Baturin P; Alivov Y; Molloi S
    Phys Med Biol; 2012 Jul; 57(13):4117-38. PubMed ID: 22683885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast analytical approach of application specific dose efficient spectrum selection for diagnostic CT imaging and PET attenuation correction.
    Rui X; Jin Y; FitzGerald PF; Wu M; Alessio AM; Kinahan PE; De Man B
    Phys Med Biol; 2016 Nov; 61(21):7787-7811. PubMed ID: 27754977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computed Tomography Number Measurement Consistency Under Different Beam Hardening Conditions: Comparison Between Dual-Energy Spectral Computed Tomography and Conventional Computed Tomography Imaging in Phantom Experiment.
    He T; Qian X; Zhai R; Yang Z
    J Comput Assist Tomogr; 2015; 39(6):981-5. PubMed ID: 26196347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual energy CT of the chest: how about the dose?
    Schenzle JC; Sommer WH; Neumaier K; Michalski G; Lechel U; Nikolaou K; Becker CR; Reiser MF; Johnson TR
    Invest Radiol; 2010 Jun; 45(6):347-53. PubMed ID: 20404737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Region-of-interest material decomposition from truncated energy-resolved CT.
    Schmidt TG; Pektas F
    Med Phys; 2011 Oct; 38(10):5657-66. PubMed ID: 21992382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of iodine concentration and scan parameters on image quality, contrast enhancement and radiation dose in thoracic CT.
    Solbak MS; Henning MK; England A; Martinsen AC; Aaløkken TM; Johansen S
    Eur Radiol Exp; 2020 Sep; 4(1):57. PubMed ID: 32915405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimentally determined spectral optimization for dedicated breast computed tomography.
    Prionas ND; Huang SY; Boone JM
    Med Phys; 2011 Feb; 38(2):646-55. PubMed ID: 21452702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of Patient Size and Radiation Dose on Accuracy and Precision of Iodine Quantification and Virtual Noncontrast Values in Dual-layer Detector CT-A Phantom Study.
    Van Hedent S; Tatsuoka C; Carr S; Laukamp KR; Eck B; Große Hokamp N; Kessner R; Ros P; Jordan D
    Acad Radiol; 2020 Mar; 27(3):409-420. PubMed ID: 30987872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic CT: simulating low dose single and dual energy protocols from a dual energy scan.
    Wang AS; Pelc NJ
    Med Phys; 2011 Oct; 38(10):5551-62. PubMed ID: 21992373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiotherapy treatment planning with contrast-enhanced computed tomography: feasibility of dual-energy virtual unenhanced imaging for improved dose calculations.
    Yamada S; Ueguchi T; Ogata T; Mizuno H; Ogihara R; Koizumi M; Shimazu T; Murase K; Ogawa K
    Radiat Oncol; 2014 Jul; 9():168. PubMed ID: 25070169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation.
    Cai Z; Pignol JP; Chattopadhyay N; Kwon YL; Lechtman E; Reilly RM
    Med Phys; 2013 Nov; 40(11):114101. PubMed ID: 24320476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.