These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33404027)

  • 1. A universal signature in the melting of metallic nanoparticles.
    Delgado-Callico L; Rossi K; Pinto-Miles R; Salzbrenner P; Baletto F
    Nanoscale; 2021 Jan; 13(2):1172-1180. PubMed ID: 33404027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscopic Thermodynamics.
    Qi W
    Acc Chem Res; 2016 Sep; 49(9):1587-95. PubMed ID: 27355129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of metallic melts in binary homogenous alloys: a thermodynamical understanding from the Wulff cluster model.
    Song L; Tian X; Shao A; Li L; Zhang Y; Li H; Lin X
    Phys Chem Chem Phys; 2020 Oct; 22(40):23237-23245. PubMed ID: 33030159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-stage melting of Au-Pd nanoparticles.
    Mejía-Rosales SJ; Fernandez-Navarro C; Pérez-Tijerina E; Montejano-Carrizales JM; José-Yacamán M
    J Phys Chem B; 2006 Jul; 110(26):12884-9. PubMed ID: 16805586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transformation of cuboctahedral to icosahedral nanoparticles: atomic structure and dynamics.
    Plessow PN
    Phys Chem Chem Phys; 2020 Jun; 22(23):12939-12945. PubMed ID: 32478375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles.
    Ferrando R
    J Phys Condens Matter; 2015 Jan; 27(1):013003. PubMed ID: 25485754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally activated microstructural evolution of metallic heterophase nanoparticles: insights from molecular dynamics simulations.
    Wen YH; Li YM; Yang WH; Huang KW; Huang R
    Nanoscale; 2022 Jul; 14(28):10236-10244. PubMed ID: 35797992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Two-Dimensional Liquid Structure Explains the Elevated Melting Temperatures of Gallium Nanoclusters.
    Steenbergen KG; Gaston N
    Nano Lett; 2016 Jan; 16(1):21-6. PubMed ID: 26624938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting of Ni and Fe nanoparticles: a molecular dynamics study with application to carbon nanotube synthesis.
    Joshi NP; Spearot DE; Bhat D
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5587-93. PubMed ID: 21133078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study.
    Liang T; Zhou D; Wu Z; Shi P
    Nanotechnology; 2017 Dec; 28(48):485704. PubMed ID: 29019463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size and shape dependent melting temperature of metallic nanomaterials.
    Zhang X; Li W; Wu D; Deng Y; Shao J; Chen L; Fang D
    J Phys Condens Matter; 2019 Feb; 31(7):075701. PubMed ID: 30523806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Microstructure in Pure Al & Cu Melts: Theory Meets Experiment.
    Song L; Tian X; Yang Y; Qin J; Li H; Lin X
    Front Chem; 2020; 8():607. PubMed ID: 32850639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the exploration of the melting behavior of metallic compounds and solid solutions
    Rincent C; Castillo-Sánchez JR; Gheribi AE; Harvey JP
    Phys Chem Chem Phys; 2023 Apr; 25(15):10866-10884. PubMed ID: 37013718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Size on the Formation of Solid Solutions in Ag-Cu Nanoparticles.
    Bogatyrenko SI; Kryshtal AP; Kruk A
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(5):2569-2580. PubMed ID: 36818666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-liquid and liquid-solid transitions in metal nanoparticles.
    Hou M
    Phys Chem Chem Phys; 2017 Feb; 19(8):5994-6005. PubMed ID: 28181623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Second Melting Temperatures Already Observed in Pure Elements by Molecular Dynamics Simulations.
    Tournier RF; Ojovan MI
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effects on atomic pair distribution functions of melts.
    Ding J; Xu M; Guan PF; Deng SW; Cheng YQ; Ma E
    J Chem Phys; 2014 Feb; 140(6):064501. PubMed ID: 24527926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenomenology of the heating, melting and diffusion processes in Au nanoparticles.
    Bertoldi DS; Millán EN; Fernández Guillermet A
    Phys Chem Chem Phys; 2021 Jan; 23(2):1298-1307. PubMed ID: 33367349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.