These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33404203)

  • 1. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates.
    Narancic T; Salvador M; Hughes GM; Beagan N; Abdulmutalib U; Kenny ST; Wu H; Saccomanno M; Um J; O'Connor KE; Jiménez JI
    Microb Biotechnol; 2021 Nov; 14(6):2463-2480. PubMed ID: 33404203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate).
    Kenny ST; Runic JN; Kaminsky W; Woods T; Babu RP; Keely CM; Blau W; O'Connor KE
    Environ Sci Technol; 2008 Oct; 42(20):7696-701. PubMed ID: 18983095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas umsongensis GO16 as a platform for the in vivo synthesis of short and medium chain length polyhydroxyalkanoate blends.
    Cerrone F; Zhou B; Mouren A; Avérous L; Conroy S; Simpson JC; O'Connor KE; Narancic T
    Bioresour Technol; 2023 Nov; 387():129668. PubMed ID: 37572888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards bio-upcycling of polyethylene terephthalate.
    Tiso T; Narancic T; Wei R; Pollet E; Beagan N; Schröder K; Honak A; Jiang M; Kenny ST; Wierckx N; Perrin R; Avérous L; Zimmermann W; O'Connor K; Blank LM
    Metab Eng; 2021 Jul; 66():167-178. PubMed ID: 33865980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate.
    Kenny ST; Runic JN; Kaminsky W; Woods T; Babu RP; O'Connor KE
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):623-33. PubMed ID: 22581066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation.
    Liu P; Zheng Y; Yuan Y; Han Y; Su T; Qi Q
    Waste Manag; 2023 Dec; 172():51-59. PubMed ID: 37714010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards synthetic PETtrophy: Engineering Pseudomonas putida for concurrent polyethylene terephthalate (PET) monomer metabolism and PET hydrolase expression.
    Brandenberg OF; Schubert OT; Kruglyak L
    Microb Cell Fact; 2022 Jun; 21(1):119. PubMed ID: 35717313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose.
    Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering.
    Liu H; Chen Y; Zhang Y; Zhao W; Guo H; Wang S; Xia W; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2022 Jun; 209(Pt A):117-124. PubMed ID: 35395277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of the β-hydroxyaspartate cycle increases growth performance of Pseudomonas putida on the PET monomer ethylene glycol.
    Schada von Borzyskowski L; Schulz-Mirbach H; Troncoso Castellanos M; Severi F; Gómez-Coronado PA; Paczia N; Glatter T; Bar-Even A; Lindner SN; Erb TJ
    Metab Eng; 2023 Mar; 76():97-109. PubMed ID: 36731627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upcycling of hydrolyzed PET by microbial conversion to a fatty acid derivative.
    Welsing G; Wolter B; Hintzen HMT; Tiso T; Blank LM
    Methods Enzymol; 2021; 648():391-421. PubMed ID: 33579413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440.
    Werner AZ; Clare R; Mand TD; Pardo I; Ramirez KJ; Haugen SJ; Bratti F; Dexter GN; Elmore JR; Huenemann JD; Peabody GL; Johnson CW; Rorrer NA; Salvachúa D; Guss AM; Beckham GT
    Metab Eng; 2021 Sep; 67():250-261. PubMed ID: 34265401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited.
    Liu S; Narancic T; Tham JL; O'Connor KE
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1863-1874. PubMed ID: 36763117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model-driven approach to upcycling recalcitrant feedstocks in Pseudomonas putida by decoupling PHA production from nutrient limitation.
    Manoli MT; Gargantilla-Becerra Á; Del Cerro Sánchez C; Rivero-Buceta V; Prieto MA; Nogales J
    Cell Rep; 2024 Apr; 43(4):113979. PubMed ID: 38517887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing.
    Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate.
    Nikodinovic J; Kenny ST; Babu RP; Woods T; Blau WJ; O'Connor KE
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):665-73. PubMed ID: 18629491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering adipic acid metabolism in Pseudomonas putida.
    Ackermann YS; Li WJ; Op de Hipt L; Niehoff PJ; Casey W; Polen T; Köbbing S; Ballerstedt H; Wynands B; O'Connor K; Blank LM; Wierckx N
    Metab Eng; 2021 Sep; 67():29-40. PubMed ID: 33965615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440.
    Zhang Y; Liu H; Liu Y; Huo K; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2021 Nov; 191():608-617. PubMed ID: 34582907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3.
    O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD
    Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.