These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33404464)

  • 1. Metal-Organic Framework-Derived Ni-Co@C Catalysts for Urea Oxidation in Urea/H₂O₂ Fuel Cells.
    Tien ND; Kim BH; Yun WH; Yoon HH
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1890-1896. PubMed ID: 33404464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-organic framework-derived Ni@C and NiO@C as anode catalysts for urea fuel cells.
    Tran TQN; Park BJ; Yun WH; Duong TN; Yoon HH
    Sci Rep; 2020 Jan; 10(1):278. PubMed ID: 31937844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ni-Co bimetal decorated carbon nanotube aerogel as an efficient anode catalyst in urea fuel cells.
    Tesfaye RM; Das G; Park BJ; Kim J; Yoon HH
    Sci Rep; 2019 Jan; 9(1):479. PubMed ID: 30679741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D Trimetal-organic framework derived metal carbon hybrid catalyst for urea electro-oxidation and 4-nitrophenol reduction.
    Gopi S; Perumal S; Al Olayan EM; AlAmri OD; Aloufi AS; Kathiresan M; Yun K
    Chemosphere; 2021 Mar; 267():129243. PubMed ID: 33338721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D ternary Ni
    Rezaee S; Shahrokhian S
    Nanoscale; 2020 Aug; 12(30):16123-16135. PubMed ID: 32700712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly active Ni-based anode material for urea electrocatalysis by a modified sol-gel method.
    Tran MH; Park BJ; Yoon HH
    J Colloid Interface Sci; 2020 Oct; 578():641-649. PubMed ID: 32559479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell.
    Xu W; Zhang H; Li G; Wu Z
    Sci Rep; 2014 Aug; 4():5863. PubMed ID: 25168632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-doped porous carbon supported Ni catalysts derived from modified Ni-MOF-74 for highly effective and selective catalytic hydrodechlorination of 1,2-dichloroethane to ethylene.
    Ning X; Sun Y; Fu H; Qu X; Xu Z; Zheng S
    Chemosphere; 2020 Feb; 241():124978. PubMed ID: 31590023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase and crystallinity regulations of Ni(OH)
    Cao Q; Yuan Y; Wang K; Huang W; Zhao Y; Sun X; Ding R; Lin W; Liu E; Gao P
    J Colloid Interface Sci; 2022 Jul; 618():411-418. PubMed ID: 35364542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd/Ni-metal-organic framework-derived porous carbon nanosheets for efficient CO oxidation over a wide pH range.
    Ipadeola AK; Eid K; Abdullah AM; Al-Hajri RS; Ozoemena KI
    Nanoscale Adv; 2022 Nov; 4(23):5044-5055. PubMed ID: 36504739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate MOF-Templated Pomegranate-Like Ni/C as Efficient Bifunctional Electrocatalyst for Hydrogen Evolution and Urea Oxidation.
    Wang L; Ren L; Wang X; Feng X; Zhou J; Wang B
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4750-4756. PubMed ID: 29308870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis.
    Xu H; Ye K; Zhu K; Yin J; Yan J; Wang G; Cao D
    Dalton Trans; 2020 May; 49(17):5646-5652. PubMed ID: 32285053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Cost Ni
    He M; Feng C; Liao T; Hu S; Wu H; Sun Z
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2225-2233. PubMed ID: 31850739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells.
    Tang H; Cai S; Xie S; Wang Z; Tong Y; Pan M; Lu X
    Adv Sci (Weinh); 2016 Feb; 3(2):1500265. PubMed ID: 27774391
    [No Abstract]   [Full Text] [Related]  

  • 15. Porous Ni-Cu Alloy Dendrite Anode Catalysts with High Activity and Selectivity for Direct Borohydride Fuel Cells.
    Hu B; Yu J; Meng J; Xu C; Cai J; Zhang B; Liu Y; Yu D; Zhou X; Chen C
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3910-3918. PubMed ID: 35020345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Electrochemical Properties of Catalyst by Phosphorous Addition for Direct Urea Fuel Cell.
    Lee U; Lee YN; Yoon YS
    Front Chem; 2020; 8():777. PubMed ID: 33195019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal organic framework-assisted in-situ synthesis of β-NiMnOOH nanosheets with abundant NiOOH active sites for efficient electro-oxidation of urea.
    Yan X; Xiang L; Zhang WD; Xu H; Yao Y; Liu J; Gu ZG
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):370-378. PubMed ID: 36162394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling Dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation.
    Cao Q; Huang W; Shou J; Sun X; Wang K; Zhao Y; Ding R; Lin W; Liu E; Gao P
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):33-43. PubMed ID: 36049327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin nickel-metal-organic framework nanobelt based electrochemical sensor for the determination of urea in human body fluids.
    Bao C; Niu Q; Chen ZA; Cao X; Wang H; Lu W
    RSC Adv; 2019 Sep; 9(50):29474-29481. PubMed ID: 35528419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Succulent-plant-like Ni-Co alloy efficient catalysts for direct borohydride fuel cells.
    Cai J; Chen P; Hu B; Xu C; Yang Y; Meng J; Zhang B; Chen C; Yu D; Zhou X
    Dalton Trans; 2023 Jan; 52(5):1378-1387. PubMed ID: 36633553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.