These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33404481)

  • 1. Effect of a High Mg Solute Content on the Hot Workability of Al-Mg Alloys.
    Lee JC; Son HW; Kim SW; Cho CH; Kim YJ; Kim JK; Hyun SK
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1990-1995. PubMed ID: 33404481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Deformation Behavior and Microstructure Evolution of 6063 Aluminum Alloy Modified by Rare Earth Y and Al-Ti-B Master Alloy.
    Ding W; Liu X; Zhao X; Chen T; Zhang H; Cheng Y; Shi H
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot Deformation Behavior of a New Al-Mn-Sc Alloy.
    Kang W; Yang Y; Cao S; Li L; Xin S; Wang H; Cao Z; Liang E; Zhang X; Huang A
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot Deformation Behavior and Microstructure Evolution of Cu-Ni-Co-Si Alloys.
    Liu F; Ma J; Peng L; Huang G; Zhang W; Xie H; Mi X
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32349437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the Hot Workability of Commercially Pure Ti Using Hot Torsion Tests.
    Kim MH; Lee JW; Kim SW; Son HW; Choi HJ; Shin YC; Lim SS; Kim JB; Jung TK; Hyun SK
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1772-1776. PubMed ID: 30469264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Workability of a Low-Cost Powder Metallurgical Ti-5Al-2Fe-3Mo Alloy Using Constitutive Modeling and Processing Map.
    Pan D; Liu B; Xu R; Qiu J; Liu C
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33572427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot Workability of the Multi-Size SiC Particle-Reinforced 6013 Aluminum Matrix Composites.
    Wu C; Chen S; Tang J; Fu D; Teng J; Jiang F
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot Deformation Behaviors of the Mg-3Sn-2Al-1Zn Alloy: Investigation on its Constitutive Equation, Processing Map, and Microstructure.
    Guo Y; Xuanyuan Y; Ly X; Yang S
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic recrystallization behavior and processing map of the Cu-Cr-Zr-Nd alloy.
    Zhang Y; Sun H; Volinsky AA; Tian B; Song K; Chai Z; Liu P; Liu Y
    Springerplus; 2016; 5(1):666. PubMed ID: 27347462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application.
    Liu D; Liu Y; Zhao Y; Huang Y; Chen M
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():690-697. PubMed ID: 28532081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot Deformation Behavior and Workability of In Situ TiB2/7050Al Composites Fabricated by Powder Metallurgy.
    Zhu H; Liu J; Wu Y; Zhang Q; Shi Q; Chen Z; Wang L; Zhang F; Wang H
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Hot Workability of Nickel-Based Superalloy Using Activation Energy Map and Processing Maps.
    Lypchanskyi O; Śleboda T; Zyguła K; Łukaszek-Sołek A; Wojtaszek M
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot Deformation Behavior and Microstructural Evolution of PM Ti43Al9V0.3Y with Fine Equiaxed γ and B2 Grain Microstructure.
    Zhang D; Chen Y; Zhang G; Liu N; Kong F; Tian J; Sun J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Deformation Behavior and Pulse Current Auxiliary Isothermal Forging of Hot Pressing Sintering TiAl Based Alloys.
    Shi C; Jiang S; Zhang K
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29258198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation into the hot workability of the as-extruded WE43 magnesium alloy using processing map.
    Wang L; Fang G; Leeflang S; Duszczyk J; Zhou J
    J Mech Behav Biomed Mater; 2014 Apr; 32():270-278. PubMed ID: 24508713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot Deformation Behavior of Homogenized Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr Alloy via Hot Compression Tests.
    Zhang Z; Yan Z; Du Y; Zhang G; Zhu J; Ren L; Wang Y
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30441881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot Deformation Treatment of Grain-Modified Mg-Li Alloy.
    Król M; Snopiński P; Pagáč M; Hajnyš J; Petrů J
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot Deformation Behavior and Processing Maps of ZnSnO
    Li WJ; Chen ZY; Tang XP; Shao WZ; Zhen L
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superplastic Deformation of Al-Cu Alloys after Grain Refinement by Extrusion Combined with Reversible Torsion.
    Rodak K; Kuc D; Mikuszewski T
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33353227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Hot Deformation Behavior of Spray-Forming and Nano-Sized Al-Cu-Mg Alloy.
    Shen T; Fan C; Ou L; Hu Z; Yang J; He W; Wang B
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3274-3282. PubMed ID: 34739782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.