These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 33404502)
1. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. Hinzke T; Kleiner M; Meister M; Schlüter R; Hentschker C; Pané-Farré J; Hildebrandt P; Felbeck H; Sievert SM; Bonn F; Völker U; Becher D; Schweder T; Markert S Elife; 2021 Jan; 10():. PubMed ID: 33404502 [TBL] [Abstract][Full Text] [Related]
2. Host-Microbe Interactions in the Chemosynthetic Hinzke T; Kleiner M; Breusing C; Felbeck H; Häsler R; Sievert SM; Schlüter R; Rosenstiel P; Reusch TBH; Schweder T; Markert S mBio; 2019 Dec; 10(6):. PubMed ID: 31848270 [TBL] [Abstract][Full Text] [Related]
3. Insights into Symbiont Population Structure among Three Vestimentiferan Tubeworm Host Species at Eastern Pacific Spreading Centers. Perez M; Juniper SK Appl Environ Microbiol; 2016 Sep; 82(17):5197-205. PubMed ID: 27316954 [TBL] [Abstract][Full Text] [Related]
4. Endosymbionts of Metazoans Dwelling in the PACManus Hydrothermal Vent: Diversity and Potential Adaptive Features Revealed by Genome Analysis. Li L; Wang M; Li L; Du Z; Sun Y; Wang X; Zhang X; Li C Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32859597 [TBL] [Abstract][Full Text] [Related]
5. Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Leonard JM; Mitchell J; Beinart RA; Delaney JA; Sanders JG; Ellis G; Goddard EA; Girguis PR; Scott KM Appl Environ Microbiol; 2021 Aug; 87(17):e0079421. PubMed ID: 34190607 [TBL] [Abstract][Full Text] [Related]
6. Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps. Eichinger I; Schmitz-Esser S; Schmid M; Fisher CR; Bright M Environ Microbiol Rep; 2014 Aug; 6(4):364-72. PubMed ID: 24992535 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Millikan DS; Felbeck H; Stein JL Appl Environ Microbiol; 1999 Jul; 65(7):3129-33. PubMed ID: 10388713 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila. Mitchell JH; Leonard JM; Delaney J; Girguis PR; Scott KM Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628148 [TBL] [Abstract][Full Text] [Related]
9. Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity. Reveillaud J; Anderson R; Reves-Sohn S; Cavanaugh C; Huber JA Microbiome; 2018 Jan; 6(1):19. PubMed ID: 29374496 [TBL] [Abstract][Full Text] [Related]
10. Endosymbiont genomes yield clues of tubeworm success. Li Y; Liles MR; Halanych KM ISME J; 2018 Nov; 12(11):2785-2795. PubMed ID: 30022157 [TBL] [Abstract][Full Text] [Related]
11. Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Zimmermann J; Lott C; Weber M; Ramette A; Bright M; Dubilier N; Petersen JM Environ Microbiol; 2014 Dec; 16(12):3638-56. PubMed ID: 24552661 [TBL] [Abstract][Full Text] [Related]
12. Sulfur-oxidizing symbionts have not co-evolved with their hydrothermal vent tube worm hosts: an RFLP analysis. Laue BE; Nelson DC Mol Mar Biol Biotechnol; 1997 Sep; 6(3):180-8. PubMed ID: 9284558 [TBL] [Abstract][Full Text] [Related]
13. A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Hughes DS; Felbeck H; Stein JL Appl Environ Microbiol; 1997 Sep; 63(9):3494-8. PubMed ID: 9293000 [TBL] [Abstract][Full Text] [Related]
14. Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Markert S; Gardebrecht A; Felbeck H; Sievert SM; Klose J; Becher D; Albrecht D; Thürmer A; Daniel R; Kleiner M; Hecker M; Schweder T Proteomics; 2011 Aug; 11(15):3106-17. PubMed ID: 21710568 [TBL] [Abstract][Full Text] [Related]
15. Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Felbeck H; Jarchow J Physiol Zool; 1998; 71(3):294-302. PubMed ID: 9634176 [TBL] [Abstract][Full Text] [Related]
16. Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae. Liao L; Wankel SD; Wu M; Cavanaugh CM; Girguis PR Mol Ecol; 2014 Mar; 23(6):1544-1557. PubMed ID: 24237389 [TBL] [Abstract][Full Text] [Related]
17. Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. Gardebrecht A; Markert S; Sievert SM; Felbeck H; Thürmer A; Albrecht D; Wollherr A; Kabisch J; Le Bris N; Lehmann R; Daniel R; Liesegang H; Hecker M; Schweder T ISME J; 2012 Apr; 6(4):766-76. PubMed ID: 22011719 [TBL] [Abstract][Full Text] [Related]
18. Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. Klose J; Polz MF; Wagner M; Schimak MP; Gollner S; Bright M Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11300-5. PubMed ID: 26283348 [TBL] [Abstract][Full Text] [Related]
19. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Robidart JC; Bench SR; Feldman RA; Novoradovsky A; Podell SB; Gaasterland T; Allen EE; Felbeck H Environ Microbiol; 2008 Mar; 10(3):727-37. PubMed ID: 18237306 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Laue BE; Nelson DC J Bacteriol; 1994 Jun; 176(12):3723-9. PubMed ID: 8206850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]