These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
746 related articles for article (PubMed ID: 33404535)
1. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Liu J; Fernie AR; Yan J Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535 [TBL] [Abstract][Full Text] [Related]
2. Genetic, evolutionary and plant breeding insights from the domestication of maize. Hake S; Ross-Ibarra J Elife; 2015 Mar; 4():. PubMed ID: 25807085 [TBL] [Abstract][Full Text] [Related]
3. Genetic Architecture of Domestication-Related Traits in Maize. Xue S; Bradbury PJ; Casstevens T; Holland JB Genetics; 2016 Sep; 204(1):99-113. PubMed ID: 27412713 [TBL] [Abstract][Full Text] [Related]
4. Genomic screening for artificial selection during domestication and improvement in maize. Yamasaki M; Wright SI; McMullen MD Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539 [TBL] [Abstract][Full Text] [Related]
5. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. Xu G; Zhang X; Chen W; Zhang R; Li Z; Wen W; Warburton ML; Li J; Li H; Yang X BMC Plant Biol; 2022 Feb; 22(1):72. PubMed ID: 35180846 [TBL] [Abstract][Full Text] [Related]
6. Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication. Ramos-Madrigal J; Smith BD; Moreno-Mayar JV; Gopalakrishnan S; Ross-Ibarra J; Gilbert MTP; Wales N Curr Biol; 2016 Dec; 26(23):3195-3201. PubMed ID: 27866890 [TBL] [Abstract][Full Text] [Related]
7. Defining the Role of the MADS-Box Gene, Zea Agamous-like1, a Target of Selection During Maize Domestication. Wills DM; Fang Z; York AM; Holland JB; Doebley JF J Hered; 2018 Mar; 109(3):333-338. PubMed ID: 28992108 [TBL] [Abstract][Full Text] [Related]
8. Root volatile profiles and herbivore preference are mediated by maize domestication, geographic spread, and modern breeding. Bernal JS; Helms AM; Fontes-Puebla AA; DeWitt TJ; Kolomiets MV; Grunseich JM Planta; 2022 Dec; 257(1):24. PubMed ID: 36562877 [TBL] [Abstract][Full Text] [Related]
9. Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. Chen Q; Li W; Tan L; Tian F Mol Plant; 2021 Jan; 14(1):9-26. PubMed ID: 33316465 [TBL] [Abstract][Full Text] [Related]
10. Domestication and lowland adaptation of coastal preceramic maize from Paredones, Peru. Vallebueno-Estrada M; Hernández-Robles GG; González-Orozco E; Lopez-Valdivia I; Rosales Tham T; Vásquez Sánchez V; Swarts K; Dillehay TD; Vielle-Calzada JP; Montiel R Elife; 2023 Apr; 12():. PubMed ID: 37070964 [TBL] [Abstract][Full Text] [Related]
11. Comparative population genomics of maize domestication and improvement. Hufford MB; Xu X; van Heerwaarden J; Pyhäjärvi T; Chia JM; Cartwright RA; Elshire RJ; Glaubitz JC; Guill KE; Kaeppler SM; Lai J; Morrell PL; Shannon LM; Song C; Springer NM; Swanson-Wagner RA; Tiffin P; Wang J; Zhang G; Doebley J; McMullen MD; Ware D; Buckler ES; Yang S; Ross-Ibarra J Nat Genet; 2012 Jun; 44(7):808-11. PubMed ID: 22660546 [TBL] [Abstract][Full Text] [Related]
12. A conserved genetic architecture among populations of the maize progenitor, teosinte, was radically altered by domestication. Chen Q; Samayoa LF; Yang CJ; Olukolu BA; York AM; Sanchez-Gonzalez JJ; Xue W; Glaubitz JC; Bradbury PJ; Romay MC; Sun Q; Buckler ES; Holland JB; Doebley JF Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34686607 [TBL] [Abstract][Full Text] [Related]
13. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. Gaikpa DS; Miedaner T Theor Appl Genet; 2019 Oct; 132(10):2721-2739. PubMed ID: 31440772 [TBL] [Abstract][Full Text] [Related]
14. Teosinte as a model system for population and ecological genomics. Hufford MB; Bilinski P; Pyhäjärvi T; Ross-Ibarra J Trends Genet; 2012 Dec; 28(12):606-15. PubMed ID: 23021022 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication. Huang J; Gao Y; Jia H; Zhang Z Mol Ecol Resour; 2016 Nov; 16(6):1465-1477. PubMed ID: 26990495 [TBL] [Abstract][Full Text] [Related]
16. Technological advances in maize breeding: past, present and future. Andorf C; Beavis WD; Hufford M; Smith S; Suza WP; Wang K; Woodhouse M; Yu J; Lübberstedt T Theor Appl Genet; 2019 Mar; 132(3):817-849. PubMed ID: 30798332 [TBL] [Abstract][Full Text] [Related]
17. Maize biology: From functional genomics to breeding application. Yan J; Tan BC J Integr Plant Biol; 2019 Jun; 61(6):654-657. PubMed ID: 31099156 [No Abstract] [Full Text] [Related]
18. Genetics and consequences of crop domestication. Flint-Garcia SA J Agric Food Chem; 2013 Sep; 61(35):8267-76. PubMed ID: 23718780 [TBL] [Abstract][Full Text] [Related]
19. Patterns of selection and tissue-specific expression among maize domestication and crop improvement loci. Hufford KM; Canaran P; Ware DH; McMullen MD; Gaut BS Plant Physiol; 2007 Jul; 144(3):1642-53. PubMed ID: 17496114 [TBL] [Abstract][Full Text] [Related]
20. New genomic approaches for enhancing maize genetic improvement. Yang N; Yan J Curr Opin Plant Biol; 2021 Apr; 60():101977. PubMed ID: 33418269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]