BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33404831)

  • 1. Characterization of BpGH16A of Bacteroides plebeius, a key enzyme initiating the depolymerization of agarose in the human gut.
    Park NJ; Yu S; Kim DH; Yun EJ; Kim KH
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):617-625. PubMed ID: 33404831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic and enzymatic elucidation of cooperative degradation of red seaweed agarose by two human gut bacteria.
    Yun EJ; Yu S; Park NJ; Cho Y; Han NR; Jin YS; Kim KH
    Sci Rep; 2021 Jul; 11(1):13955. PubMed ID: 34230500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of neoagarooligosaccharides by probiotic yeast Saccharomyces cerevisiae var. boulardii engineered as a microbial cell factory.
    Jin Y; Yu S; Liu JJ; Yun EJ; Lee JW; Jin YS; Kim KH
    Microb Cell Fact; 2021 Aug; 20(1):160. PubMed ID: 34407819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Neoagarooligosaccharide Hydrolase
    Jin Y; Yu S; Kim DH; Yun EJ; Kim KH
    Mar Drugs; 2021 May; 19(5):. PubMed ID: 34068166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes.
    Hehemann JH; Kelly AG; Pudlo NA; Martens EC; Boraston AB
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19786-91. PubMed ID: 23150581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of a hybrid algal galactan by members of the human gut microbiome.
    Robb CS; Hobbs JK; Pluvinage B; Reintjes G; Klassen L; Monteith S; Giljan G; Amundsen C; Vickers C; Hettle AG; Hills R; Nitin ; Xing X; Montina T; Zandberg WF; Abbott DW; Boraston AB
    Nat Chem Biol; 2022 May; 18(5):501-510. PubMed ID: 35289327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfation of Arabinogalactan Proteins Confers Privileged Nutrient Status to Bacteroides plebeius.
    Munoz-Munoz J; Ndeh D; Fernandez-Julia P; Walton G; Henrissat B; Gilbert HJ
    mBio; 2021 Aug; 12(4):e0136821. PubMed ID: 34340552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7.
    Jung S; Lee CR; Chi WJ; Bae CH; Hong SK
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1965-1974. PubMed ID: 27832307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota.
    Hehemann JH; Correc G; Barbeyron T; Helbert W; Czjzek M; Michel G
    Nature; 2010 Apr; 464(7290):908-12. PubMed ID: 20376150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a GH50 β-Agarase: A Biotechnological Tool for Preparing Oligosaccharides from Agarose and Porphyran.
    Jiang C; Zhang T; Xu Y; Mao X
    J Agric Food Chem; 2022 Aug; 70(32):9931-9940. PubMed ID: 35866448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducible expression of agar-degrading genes in a marine bacterium Catenovulum maritimus Q1
    Xu ZX; Yu P; Liang QY; Mu DS; Du ZJ
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10541-10553. PubMed ID: 33104843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and overexpression of a glycosyl hydrolase family 16 beta-agarase YM01-1 from marine bacterium Catenovulum agarivorans YM01
    An K; Shi X; Cui F; Cheng J; Liu N; Zhao X; Zhang XH
    Protein Expr Purif; 2018 Mar; 143():1-8. PubMed ID: 28986239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical Characteristics and Substrate Degradation Pattern of a Novel Exo-Type β-Agarase from the Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. Strain MY04.
    Han W; Cheng Y; Wang D; Wang S; Liu H; Gu J; Wu Z; Li F
    Appl Environ Microbiol; 2016 Aug; 82(16):4944-54. PubMed ID: 27260364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds.
    Hehemann JH; Smyth L; Yadav A; Vocadlo DJ; Boraston AB
    J Biol Chem; 2012 Apr; 287(17):13985-95. PubMed ID: 22393053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and Characterization of an Eosinophilic GH 16 β-Agarase (AgaDL6) from an Agar-Degrading Marine Bacterium
    Liu Y; Tian X; Peng C; Du Z
    J Microbiol Biotechnol; 2019 Feb; 29(2):235-243. PubMed ID: 30544285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of neoagarobiose from agar through a dual-enzyme and two-stage hydrolysis strategy.
    Yan J; Chen P; Zeng Y; Yang J; Men Y; Zhu Y; Sun Y
    Int J Biol Macromol; 2020 Oct; 160():288-295. PubMed ID: 32470583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Agarolytic Pathways in a Marine Bacterium,
    Yu S; Yun EJ; Kim DH; Park SY; Kim KH
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924614
    [No Abstract]   [Full Text] [Related]  

  • 18. A novel GH16 beta-agarase isolated from a marine bacterium, Microbulbifer sp. BN3 and its characterization and high-level expression in Pichia pastoris.
    Li RK; Chen Z; Ying XJ; Ng TB; Ye XY
    Int J Biol Macromol; 2018 Nov; 119():1164-1170. PubMed ID: 30107160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type β-agarase-producing neoagarobiose.
    Temuujin U; Chi WJ; Chang YK; Hong SK
    J Bacteriol; 2012 Jan; 194(1):142-9. PubMed ID: 22020647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, Expression, and Biochemical Characterization of a Novel Acidic GH16 β-Agarase, AgaJ11, from Gayadomonas joobiniege G7.
    Jung S; Jeong BC; Hong SK; Lee CR
    Appl Biochem Biotechnol; 2017 Mar; 181(3):961-971. PubMed ID: 27743343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.