BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33404920)

  • 1. Aerenchyma, gas diffusion, and catalase activity in Typha domingensis: a complementary model for radial oxygen loss.
    Duarte VP; Pereira MP; Corrêa FF; de Castro EM; Pereira FJ
    Protoplasma; 2021 Jul; 258(4):765-777. PubMed ID: 33404920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root anatomy, growth, and development of Typha domingensis Pers. (Typhaceae) and their relationship with cadmium absorption, accumulation, and tolerance.
    de Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; de Castro EM; Pereira FJ
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19878-19889. PubMed ID: 35080729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology.
    Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; Castro EM; Pereira FJ
    Braz J Biol; 2018 Aug; 78(3):509-516. PubMed ID: 29995113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice.
    Lin C; Ogorek LLP; Pedersen O; Sauter M
    J Exp Bot; 2021 Feb; 72(5):1879-1890. PubMed ID: 33206163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial variation of heavy metals and uptake potential by Typha domingensis in a tropical reservoir in the midlands region, Zimbabwe.
    Dube T; Mhangwa G; Makaka C; Parirenyatwa B; Muteveri T
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10097-10105. PubMed ID: 30756354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism.
    Chabbi A; McKee KL; Mendelssohn IA
    Am J Bot; 2000 Aug; 87(8):1081-90. PubMed ID: 10947992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of mercury in Typha domingensis under field conditions.
    Lominchar MA; Sierra MJ; Millán R
    Chemosphere; 2015 Jan; 119():994-999. PubMed ID: 25303659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited effect of radial oxygen loss on ammonia oxidizers in Typha angustifolia root hairs.
    Hernández-Del Amo E; Dolinová I; la Ramis-Jorba G; Gich F; Bañeras L
    Sci Rep; 2020 Sep; 10(1):15694. PubMed ID: 32973299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of seasonal variation to the population growth and ecophysiology of Typha domingensis (Typhaceae).
    da Cunha Cruz Y; Scarpa ALM; Díaz AS; Pereira MP; de Castro EM; Pereira FJ
    J Plant Res; 2023 Sep; 136(5):665-678. PubMed ID: 37219754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus.
    Eid EM; Galal TM; Shaltout KH; El-Sheikh MA; Asaeda T; Alatar AA; Alfarhan AH; Alharthi A; Alshehri AMA; Picó Y; Barcelo D
    Sci Total Environ; 2020 Apr; 714():136603. PubMed ID: 31982738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foliar architecture and physio-biochemical plasticity determines survival of Typha domingensis pers. Ecotypes in nickel and salt affected soil.
    Akhter N; Aqeel M; Hameed M; Sakit Alhaithloul HA; Alghanem SM; Shahnaz MM; Hashem M; Alamri S; Khalid N; Al-Zoubi OM; Iqbal MF; Masood T; Noman A
    Environ Pollut; 2021 Oct; 286():117316. PubMed ID: 33990051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.
    Witztum A; Wayne R
    Ann Bot; 2014 Apr; 113(5):789-97. PubMed ID: 24532647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influences of Biochar Application on Root Aerenchyma and Radial Oxygen Loss of
    Huang L; Liang YK; Liang Y; Luo X; Chen YC
    Huan Jing Ke Xue; 2019 Mar; 40(3):1280-1286. PubMed ID: 31087975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptability of Typha domingensis to high pH and salinity.
    Mufarrege MM; Di Luca GA; Hadad HR; Maine MA
    Ecotoxicology; 2011 Mar; 20(2):457-65. PubMed ID: 21287266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal dynamics and tolerance of Typha domingensis exposed to high concentrations of Cr, Ni and Zn.
    Mufarrege MM; Hadad HR; Di Luca GA; Maine MA
    Ecotoxicol Environ Saf; 2014 Jul; 105():90-6. PubMed ID: 24793518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting oxygen dynamics in the freshwater isoetid Lobelia dortmanna and the marine seagrass Zostera marina.
    Sand-Jensen K; Pedersen O; Binzer T; Borum J
    Ann Bot; 2005 Sep; 96(4):613-23. PubMed ID: 16027129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo transcriptomic analysis to identify differentially expressed genes during the process of aerenchyma formation in Typha angustifolia leaves.
    Du XM; Ni XL; Ren XL; Xin GL; Jia GL; Liu HD; Liu WZ
    Gene; 2018 Jul; 662():66-75. PubMed ID: 29625266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainability of a constructed wetland faced with a depredation event.
    Maine MA; Hadad HR; Sánchez GC; Mufarrege MM; Di Luca GA; Caffaratti SE; Pedro MC
    J Environ Manage; 2013 Oct; 128():1-6. PubMed ID: 23694854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn.
    Mufarrege MM; Hadad HR; Di Luca GA; Maine MA
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):286-92. PubMed ID: 25062549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.