These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 33404982)
21. Parkinson's disease pathogenesis from the viewpoint of small fish models. Matsui H; Takahashi R J Neural Transm (Vienna); 2018 Jan; 125(1):25-33. PubMed ID: 28770388 [TBL] [Abstract][Full Text] [Related]
22. Microglia as modulators of exosomal alpha-synuclein transmission. Xia Y; Zhang G; Han C; Ma K; Guo X; Wan F; Kou L; Yin S; Liu L; Huang J; Xiong N; Wang T Cell Death Dis; 2019 Feb; 10(3):174. PubMed ID: 30787269 [TBL] [Abstract][Full Text] [Related]
23. A split-GFP tool reveals differences in the sub-mitochondrial distribution of wt and mutant alpha-synuclein. Vicario M; Cieri D; Vallese F; Catoni C; Barazzuol L; Berto P; Grinzato A; Barbieri L; Brini M; Calì T Cell Death Dis; 2019 Nov; 10(11):857. PubMed ID: 31719530 [TBL] [Abstract][Full Text] [Related]
24. The Emerging Role of the Lysosome in Parkinson's Disease. Navarro-Romero A; Montpeyó M; Martinez-Vicente M Cells; 2020 Nov; 9(11):. PubMed ID: 33147750 [TBL] [Abstract][Full Text] [Related]
25. Exosome release and neuropathology induced by α-synuclein: new insights into protective mechanisms of Drp1 inhibition. Fan RZ; Guo M; Luo S; Cui M; Tieu K Acta Neuropathol Commun; 2019 Nov; 7(1):184. PubMed ID: 31744532 [TBL] [Abstract][Full Text] [Related]
26. Current perspective of mitochondrial biology in Parkinson's disease. Ammal Kaidery N; Thomas B Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604 [TBL] [Abstract][Full Text] [Related]
27. Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson's disease. Franco-Iborra S; Cuadros T; Parent A; Romero-Gimenez J; Vila M; Perier C Cell Death Dis; 2018 Nov; 9(11):1122. PubMed ID: 30405116 [TBL] [Abstract][Full Text] [Related]
28. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Burbulla LF; Song P; Mazzulli JR; Zampese E; Wong YC; Jeon S; Santos DP; Blanz J; Obermaier CD; Strojny C; Savas JN; Kiskinis E; Zhuang X; Krüger R; Surmeier DJ; Krainc D Science; 2017 Sep; 357(6357):1255-1261. PubMed ID: 28882997 [TBL] [Abstract][Full Text] [Related]
29. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. Zhang J; Culp ML; Craver JG; Darley-Usmar V J Neurochem; 2018 Mar; 144(6):691-709. PubMed ID: 29341130 [TBL] [Abstract][Full Text] [Related]
30. Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. Calì T; Ottolini D; Brini M Biofactors; 2011; 37(3):228-40. PubMed ID: 21674642 [TBL] [Abstract][Full Text] [Related]
31. Mitochondrial-Derived Vesicles as Candidate Biomarkers in Parkinson's Disease: Rationale, Design and Methods of the EXosomes in PArkiNson Disease (EXPAND) Study. Picca A; Guerra F; Calvani R; Bucci C; Lo Monaco MR; Bentivoglio AR; Landi F; Bernabei R; Marzetti E Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31091653 [TBL] [Abstract][Full Text] [Related]
32. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Büeler H Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005 [TBL] [Abstract][Full Text] [Related]
33. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease. Rekha KR; Inmozhi Sivakamasundari R Neurochem Res; 2018 Oct; 43(10):1947-1962. PubMed ID: 30141137 [TBL] [Abstract][Full Text] [Related]
34. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. Ray B; Bhat A; Mahalakshmi AM; Tuladhar S; Bishir M; Mohan SK; Veeraraghavan VP; Chandra R; Essa MM; Chidambaram SB; Sakharkar MK ASN Neuro; 2021; 13():17590914211028364. PubMed ID: 34304614 [TBL] [Abstract][Full Text] [Related]
35. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson's disease. Grassi D; Howard S; Zhou M; Diaz-Perez N; Urban NT; Guerrero-Given D; Kamasawa N; Volpicelli-Daley LA; LoGrasso P; Lasmézas CI Proc Natl Acad Sci U S A; 2018 Mar; 115(11):E2634-E2643. PubMed ID: 29487216 [TBL] [Abstract][Full Text] [Related]
36. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson's disease. Hastings TG J Bioenerg Biomembr; 2009 Dec; 41(6):469-72. PubMed ID: 19967436 [TBL] [Abstract][Full Text] [Related]
37. NLRX1 regulates TNF-α-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells. Singh K; Roy M; Prajapati P; Lipatova A; Sripada L; Gohel D; Singh A; Mane M; Godbole MM; Chumakov PM; Singh R Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1460-1476. PubMed ID: 30802640 [TBL] [Abstract][Full Text] [Related]
38. Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness. Cieri D; Brini M; Calì T Biochem Biophys Res Commun; 2017 Feb; 483(4):1020-1030. PubMed ID: 27581196 [TBL] [Abstract][Full Text] [Related]
39. Deregulation of autophagy and vesicle trafficking in Parkinson's disease. Sheehan P; Yue Z Neurosci Lett; 2019 Apr; 697():59-65. PubMed ID: 29627340 [TBL] [Abstract][Full Text] [Related]
40. Mitochondria-lysosome-extracellular vesicles axis and nanotheranostics in neurodegenerative diseases. Kou L; Wang Y; Li J; Zou W; Jin Z; Yin S; Chi X; Sun Y; Wu J; Wang T; Xia Y Exp Neurol; 2024 Jun; 376():114757. PubMed ID: 38508481 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]