BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33405223)

  • 1. Steady-State Cell-Free Gene Expression with Microfluidic Chemostats.
    Laohakunakorn N; Lavickova B; Swank Z; Laurent J; Maerkl SJ
    Methods Mol Biol; 2021; 2229():189-203. PubMed ID: 33405223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of cell-free biological networks at steady state.
    Niederholtmeyer H; Stepanova V; Maerkl SJ
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):15985-90. PubMed ID: 24043836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-free extract based optimization of biomolecular circuits with droplet microfluidics.
    Hori Y; Kantak C; Murray RM; Abate AR
    Lab Chip; 2017 Sep; 17(18):3037-3042. PubMed ID: 28770936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Cell-Free Transcription-Translation Reactions in Microfluidic Chemostats Augmented with Hydrogel Membranes for Continuous Small Molecule Dialysis.
    Lavickova B; Grasemann L; Maerkl SJ
    ACS Synth Biol; 2022 Dec; 11(12):4134-4141. PubMed ID: 36475685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic technologies for studying synthetic circuits.
    Lin B; Levchenko A
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):307-17. PubMed ID: 22609335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.
    Lee KH; Kim DM
    Biotechnol J; 2013 Nov; 8(11):1292-300. PubMed ID: 24123955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multilayer Microfluidic Platform for the Conduction of Prolonged Cell-Free Gene Expression.
    van der Linden AJ; Yelleswarapu M; Pieters PA; Swank Z; Huck WTS; Maerkl SJ; de Greef TFA
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-Free Characterization of Coherent Feed-Forward Loop-Based Synthetic Genetic Circuits.
    Pieters PA; Nathalia BL; van der Linden AJ; Yin P; Kim J; Huck WTS; de Greef TFA
    ACS Synth Biol; 2021 Jun; 10(6):1406-1416. PubMed ID: 34061505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of microfluidics into the synthetic biology design flow.
    Huang H; Densmore D
    Lab Chip; 2014 Sep; 14(18):3459-74. PubMed ID: 25012162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFPU: A Cell-Free Processing Unit for High-Throughput, Automated In Vitro Circuit Characterization in Steady-State Conditions.
    Swank Z; Maerkl SJ
    Biodes Res; 2021; 2021():2968181. PubMed ID: 37849954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic technologies for synthetic biology.
    Vinuselvi P; Park S; Kim M; Park JM; Kim T; Lee SK
    Int J Mol Sci; 2011; 12(6):3576-93. PubMed ID: 21747695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices.
    Ayoubi-Joshaghani MH; Dianat-Moghadam H; Seidi K; Jahanban-Esfahalan A; Zare P; Jahanban-Esfahlan R
    Biotechnol Bioeng; 2020 Apr; 117(4):1204-1229. PubMed ID: 31840797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic platforms for the dynamic characterisation of synthetic circuitry.
    Prangemeier T; Lehr FX; Schoeman RM; Koeppl H
    Curr Opin Biotechnol; 2020 Jun; 63():167-176. PubMed ID: 32172160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms.
    Leal-Alves C; Deng Z; Kermeci N; Shih SCC
    Lab Chip; 2024 May; 24(11):2834-2860. PubMed ID: 38712893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics for synthetic biology: from design to execution.
    Ferry MS; Razinkov IA; Hasty J
    Methods Enzymol; 2011; 497():295-372. PubMed ID: 21601093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open-source, community-driven microfluidics with Metafluidics.
    Kong DS; Thorsen TA; Babb J; Wick ST; Gam JJ; Weiss R; Carr PA
    Nat Biotechnol; 2017 Jun; 35(6):523-529. PubMed ID: 28591125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting synthetic gene networks.
    di Bernardo D; Marucci L; Menolascina F; Siciliano V
    Methods Mol Biol; 2012; 813():57-81. PubMed ID: 22083736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromachining of Polymeric Microfluidic Micro/Nanoelectroporation Device.
    Li L
    Methods Mol Biol; 2020; 2050():21-27. PubMed ID: 31468476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic biology. Programmable on-chip DNA compartments as artificial cells.
    Karzbrun E; Tayar AM; Noireaux V; Bar-Ziv RH
    Science; 2014 Aug; 345(6198):829-32. PubMed ID: 25124443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tools and applications in synthetic biology.
    MacDonald IC; Deans TL
    Adv Drug Deliv Rev; 2016 Oct; 105(Pt A):20-34. PubMed ID: 27568463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.