These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33405226)

  • 1. A Cyber-Physical Platform for Model Calibration.
    Bandiera L; Gomez-Cabeza D; Balsa-Canto E; Menolascina F
    Methods Mol Biol; 2021; 2229():241-265. PubMed ID: 33405226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a prototype flow microreactor for synthetic biology in vitro.
    Boehm CR; Freemont PS; Ces O
    Lab Chip; 2013 Sep; 13(17):3426-32. PubMed ID: 23842984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a fully integrated platform and disposable microfluidic chips enabling parallel purification of genome segments for assembly.
    Kersaudy-Kerhoas M; Amalou F; Che A; Kelly J; Liu Y; Desmulliez MP; Shu W
    Biotechnol Bioeng; 2014 Aug; 111(8):1627-37. PubMed ID: 24615218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-State Cell-Free Gene Expression with Microfluidic Chemostats.
    Laohakunakorn N; Lavickova B; Swank Z; Laurent J; Maerkl SJ
    Methods Mol Biol; 2021; 2229():189-203. PubMed ID: 33405223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugal microfluidics for biomedical applications.
    Gorkin R; Park J; Siegrist J; Amasia M; Lee BS; Park JM; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2010 Jul; 10(14):1758-73. PubMed ID: 20512178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation and computational modeling of hydrodynamics in bifurcating microchannels.
    Janakiraman V; Sastry S; Kadambi JR; Baskaran H
    Biomed Microdevices; 2008 Jun; 10(3):355-65. PubMed ID: 18175219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet microfluidics for synthetic biology.
    Gach PC; Iwai K; Kim PW; Hillson NJ; Singh AK
    Lab Chip; 2017 Oct; 17(20):3388-3400. PubMed ID: 28820204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell biology at the interface of nanobiosensors and microfluidics.
    Bhalla N; Chiang HJ; Shen AQ
    Methods Cell Biol; 2018; 148():203-227. PubMed ID: 30473070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling life.
    Shuler ML
    Ann Biomed Eng; 2012 Jul; 40(7):1399-407. PubMed ID: 22527010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of microfluidics into the synthetic biology design flow.
    Huang H; Densmore D
    Lab Chip; 2014 Sep; 14(18):3459-74. PubMed ID: 25012162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-free extract based optimization of biomolecular circuits with droplet microfluidics.
    Hori Y; Kantak C; Murray RM; Abate AR
    Lab Chip; 2017 Sep; 17(18):3037-3042. PubMed ID: 28770936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-dimensional studies of synthetic genetic promoters enabled by microfluidic impact printing.
    Fan J; Villarreal F; Weyers B; Ding Y; Tseng KH; Li J; Li B; Tan C; Pan T
    Lab Chip; 2017 Jun; 17(13):2198-2207. PubMed ID: 28613297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances, opportunities and challenges in cybergenetic identification and control of biomolecular networks.
    Caringella G; Bandiera L; Menolascina F
    Curr Opin Biotechnol; 2023 Apr; 80():102893. PubMed ID: 36706519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Microfluidic/Microscopy-Based Platform for on-Chip Controlled Gene Expression in Mammalian Cells.
    Khazim M; Pedone E; Postiglione L; di Bernardo D; Marucci L
    Methods Mol Biol; 2021; 2229():205-219. PubMed ID: 33405224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends in computational simulations of electrochemical processes under hydrodynamic flow in microchannels.
    Santillo MF; Ewing AG; Heien ML
    Anal Bioanal Chem; 2011 Jan; 399(1):183-90. PubMed ID: 20734034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.
    Wade JH; Jones JD; Lenov IL; Riordan CM; Sligar SG; Bailey RC
    Lab Chip; 2017 Aug; 17(17):2951-2959. PubMed ID: 28767110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic platforms for the dynamic characterisation of synthetic circuitry.
    Prangemeier T; Lehr FX; Schoeman RM; Koeppl H
    Curr Opin Biotechnol; 2020 Jun; 63():167-176. PubMed ID: 32172160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic chambers using fluid walls for cell biology.
    Soitu C; Feuerborn A; Tan AN; Walker H; Walsh PA; Castrejón-Pita AA; Cook PR; Walsh EJ
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E5926-E5933. PubMed ID: 29895687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanistic model of the BLADE platform predicts performance characteristics of 256 different synthetic DNA recombination circuits.
    Bowyer JE; Ding C; Weinberg BH; Wong WW; Bates DG
    PLoS Comput Biol; 2020 Dec; 16(12):e1007849. PubMed ID: 33338034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.