These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3340545)

  • 1. Analysis of conformational parameters in nucleic acid fragments. II. Co-crystal complexes of nucleic acid bases.
    Wilson CC
    Nucleic Acids Res; 1988 Jan; 16(2):385-93. PubMed ID: 3340545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of conformational parameters in nucleic acid fragments. I. Single crystals of nucleosides and nucleotides.
    Wilson CC
    Nucleic Acids Res; 1987 Nov; 15(21):8577-91. PubMed ID: 3684565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of conformational parameters in nucleic acid fragments. III. Very short chain oligonucleotides. The effect of base stacking.
    Wilson CC
    Nucleic Acids Res; 1988 Jun; 16(11):4751-9. PubMed ID: 3387207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of conformational parameters in nucleic acid fragments. IV. Intercalating drug complexes of very short chain oligonucleotides.
    Wilson CC
    Nucleic Acids Res; 1988 Jun; 16(12):5229-40. PubMed ID: 3387236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical studies on protein-nucleic acid interactions. II. Hydrogen bonding of amino acid side chains with bases and base pairs of nucleic acids.
    Kumar NV; Govil G
    Biopolymers; 1984 Oct; 23(10):1995-2008. PubMed ID: 6498290
    [No Abstract]   [Full Text] [Related]  

  • 7. Simulation of interactions between nucleic acid bases by refined atom-atom potential functions.
    Poltev VI; Shulyupina NV
    J Biomol Struct Dyn; 1986 Feb; 3(4):739-65. PubMed ID: 3271047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Mukherjee S; Bansal M; Bhattacharyya D
    J Comput Aided Mol Des; 2006; 20(10-11):629-45. PubMed ID: 17124630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base pair buckling can eliminate the interstrand purine clash at the CpG steps in B-DNA caused by the base pair propeller twisting.
    Sponer J; Kypr J
    J Biomol Struct Dyn; 1990 Jun; 7(6):1211-20. PubMed ID: 2363846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
    Packer MJ; Hunter CA
    J Mol Biol; 1998 Jul; 280(3):407-20. PubMed ID: 9665845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydration and stability of nucleic acid bases and base pairs.
    Kabelác M; Hobza P
    Phys Chem Chem Phys; 2007 Feb; 9(8):903-17. PubMed ID: 17301881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity chromatography of nucleosides and nucleic acid base derivatives with nucleic acid bases or nitrobenzeneboronic acid substituted silicas.
    Akashi M; Tokiyoshi T; Miyauchi N; Mosbach K
    Nucleic Acids Symp Ser; 1985; (16):41-4. PubMed ID: 3003709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study oh the effect of "bound" water on the proton chemical shifts of the nucleic acid bases.
    Giessner-Prettre C; Prado FR; Pullman B
    Nucleic Acids Res; 1977 Sep; 4(9):3229-38. PubMed ID: 909804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Simulation of interactions in the co-planar nucleic acid base pairs using atom-atom potential functions].
    Poltev VI; Shuliupina NV
    Mol Biol (Mosk); 1984; 18(6):1549-61. PubMed ID: 6521736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometries and energies of Watson-Crick base pairs in oligonucleotide crystal structures.
    Jursa J; Kypr J
    Gen Physiol Biophys; 1993 Oct; 12(5):401-19. PubMed ID: 8181688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study on the proton chemical shifts of hydrogen bonded nucleic acid bases.
    Giessner-Prettre C; Pullman B; Caillet J
    Nucleic Acids Res; 1977 Jan; 4(1):99-116. PubMed ID: 866180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of crystallographically determined and computationally predicted hydrogen-bonded pairing configurations of nucleic acid bases.
    Ornstein RL; Fresco JR
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5171-5. PubMed ID: 6577415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational feasibility of a DNA hairpin with one-base loop.
    Bhaumik SR
    Biochem Biophys Res Commun; 1996 Mar; 220(3):853-7. PubMed ID: 8607855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational studies of nucleic acids. II. The conformational energetics of commonly occurring nucleosides.
    Pearlman DA; Kim SH
    J Biomol Struct Dyn; 1985 Aug; 3(1):99-125. PubMed ID: 3917020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base-pairing properties of O-methylated bases of nucleic acids. Energetic and steric considerations.
    Pohorille A; Loew GH
    Biophys Chem; 1985 Jun; 22(1-2):37-51. PubMed ID: 3896331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.