These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33405506)

  • 1. Arrays of Microscale Linear Ridges with Self-Cleaning Functionality for the Oxygen Evolution Reaction.
    Taylor AK; Mou T; Sonea A; Chen J; Yee BB; Gates BD
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2399-2413. PubMed ID: 33405506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexagonal Arrays of Cylindrical Nickel Microstructures for Improved Oxygen Evolution Reaction.
    Paul MT; Yee BB; Bruce DR; Gates BD
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7036-7043. PubMed ID: 28164693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Effects of Ultrasound (408 kHz) on the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) on Raney-Ni in Alkaline Media.
    Foroughi F; Immanuel Bernäcker C; Röntzsch L; Pollet BG
    Ultrason Sonochem; 2022 Mar; 84():105979. PubMed ID: 35299037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring 3D-Printed Electrodes for Enhanced Water Splitting.
    Márquez RA; Kawashima K; Son YJ; Rose R; Smith LA; Miller N; Carrasco Jaim OA; Celio H; Mullins CB
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42153-42170. PubMed ID: 36084243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing Gas Bubble Escape Rate for Water Splitting with Nonwoven Stainless Steel Fabrics.
    Wang L; Huang X; Jiang S; Li M; Zhang K; Yan Y; Zhang H; Xue JM
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40281-40289. PubMed ID: 29098849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis.
    Cho KM; Deshmukh PR; Shin WG
    Ultrason Sonochem; 2021 Dec; 80():105796. PubMed ID: 34678597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen Bubble Size Distribution on Nanostructured Ni Surfaces: Electrochemically Active Surface Area Versus Wettability.
    Krause L; Skibińska K; Rox H; Baumann R; Marzec MM; Yang X; Mutschke G; Żabiński P; Lasagni AF; Eckert K
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18290-18299. PubMed ID: 37010817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoP Microscale Prism-like Superstructure Arrays on Ni Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting.
    Cao S; You N; Wei L; Huang C; Fan X; Shi K; Yang Z; Zhang W
    Inorg Chem; 2020 Jun; 59(12):8522-8531. PubMed ID: 32463675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibuoyancy and Unidirectional Gas Evolution by Janus Electrodes with Asymmetric Wettability.
    Sheng S; Shi B; Wang C; Luo L; Lin X; Li P; Chen F; Shang Z; Meng H; Kuang Y; Lin WF; Sun X
    ACS Appl Mater Interfaces; 2020 May; 12(20):23627-23634. PubMed ID: 32348671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superwetting Electrodes for Gas-Involving Electrocatalysis.
    Xu W; Lu Z; Sun X; Jiang L; Duan X
    Acc Chem Res; 2018 Jul; 51(7):1590-1598. PubMed ID: 29883085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ni electrodes with 3D-ordered surface structures for boosting bubble releasing toward high current density alkaline water splitting.
    Ma J; Yang M; Zhao G; Li Y; Liu B; Dang J; Gu J; Hu S; Yang F; Ouyang M
    Ultrason Sonochem; 2023 Jun; 96():106398. PubMed ID: 37156161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MoS
    Sui C; Chen K; Zhao L; Zhou L; Wang QQ
    Nanoscale; 2018 Aug; 10(32):15324-15331. PubMed ID: 30069564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile electrodeposition of ternary Ni-Fe-Co alloy nanostructure as a binder free, cost-effective and durable electrocatalyst for high-performance overall water splitting.
    Barati Darband G; Aliofkhazraei M; Rouhaghdam AS
    J Colloid Interface Sci; 2019 Jul; 547():407-420. PubMed ID: 30999075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-site hydrogen bubble template method to prepare Ni coated metal meshes as effective bi-functional electrodes for water splitting.
    Dong Y; Ji S; Wang H; Linkov V; Wang R
    Dalton Trans; 2022 Jun; 51(25):9681-9688. PubMed ID: 35695272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodeposition of Ni-Co-Fe mixed sulfide ultrathin nanosheets on Ni nanocones: a low-cost, durable and high performance catalyst for electrochemical water splitting.
    Barati Darband G; Aliofkhazraei M; Hyun S; Sabour Rouhaghdam A; Shanmugam S
    Nanoscale; 2019 Sep; 11(35):16621-16634. PubMed ID: 31460535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Oxygen Evolution and Gas Bubble Release Achieved by a Low Gas Bubble Adhesive Iron-Nickel Vanadate Electrocatalyst.
    Dastafkan K; Meyer Q; Chen X; Zhao C
    Small; 2020 Aug; 16(32):e2002412. PubMed ID: 32627936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Bubbles on Electrochemically Active Surface Area of Microtextured Gas-Evolving Electrodes.
    Lake JR; Soto ÁM; Varanasi KK
    Langmuir; 2022 Mar; 38(10):3276-3283. PubMed ID: 35229608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving electrokinetic microdevice stability by controlling electrolysis bubbles.
    Lee HY; Barber C; Minerick AR
    Electrophoresis; 2014 Jul; 35(12-13):1782-9. PubMed ID: 24648277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolysis-Driven and Pressure-Controlled Diffusive Growth of Successive Bubbles on Microstructured Surfaces.
    van der Linde P; Moreno Soto Á; Peñas-López P; Rodríguez-Rodríguez J; Lohse D; Gardeniers H; van der Meer D; Fernández Rivas D
    Langmuir; 2017 Nov; 33(45):12873-12886. PubMed ID: 29041778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to Enhance Gas Removal from Porous Electrodes?
    Kadyk T; Bruce D; Eikerling M
    Sci Rep; 2016 Dec; 6():38780. PubMed ID: 28008914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.