These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 33405536)
1. 3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures. Gutierrez E; Burdiles PA; Quero F; Palma P; Olate-Moya F; Palza H ACS Biomater Sci Eng; 2019 Nov; 5(11):6290-6299. PubMed ID: 33405536 [TBL] [Abstract][Full Text] [Related]
2. 3D Freeform Printing of Nanocomposite Hydrogels through Chen S; Jang TS; Pan HM; Jung HD; Sia MW; Xie S; Hang Y; Chong SKM; Wang D; Song J Int J Bioprint; 2020; 6(2):258. PubMed ID: 32782988 [TBL] [Abstract][Full Text] [Related]
3. Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing. Yoon HS; Yang K; Kim YM; Nam K; Roh YH Carbohydr Polym; 2021 Nov; 272():118469. PubMed ID: 34420728 [TBL] [Abstract][Full Text] [Related]
4. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
5. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Klinkajon W; Supaphol P Biomed Mater; 2014 Aug; 9(4):045008. PubMed ID: 25029588 [TBL] [Abstract][Full Text] [Related]
6. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures. Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487 [TBL] [Abstract][Full Text] [Related]
7. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering. Abouzeid RE; Khiari R; Beneventi D; Dufresne A Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348 [TBL] [Abstract][Full Text] [Related]
9. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells]. ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684 [No Abstract] [Full Text] [Related]
10. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
12. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels. Hopson C; Rigual V; Alonso MV; Oliet M; Rodriguez F Carbohydr Polym; 2023 Aug; 313():120897. PubMed ID: 37182980 [TBL] [Abstract][Full Text] [Related]
13. Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels. Berglund L; Rakar J; Junker JPE; Forsberg F; Oksman K ACS Appl Bio Mater; 2020 Sep; 3(9):6510-6520. PubMed ID: 35021782 [TBL] [Abstract][Full Text] [Related]
14. Rheological properties and 3D-printability of cellulose nanocrystals/deep eutectic solvent electroactive ion gels. Vorobiov VK; Sokolova MP; Bobrova NV; Elokhovsky VY; Smirnov MA Carbohydr Polym; 2022 Aug; 290():119475. PubMed ID: 35550751 [TBL] [Abstract][Full Text] [Related]
15. Direct-ink-writable nanocellulose ternary hydrogels via one-pot gelation with alginate and calcium montmorillonite. Li H; Xia Y; Guo R; Wang H; Wang X; Yang Z; Zhao Y; Li J; Wang C; Huan S Carbohydr Polym; 2024 Nov; 344():122494. PubMed ID: 39218538 [TBL] [Abstract][Full Text] [Related]
16. Towards antimicrobial yet bioactive Cu-alginate hydrogels. Madzovska-Malagurski I; Vukasinovic-Sekulic M; Kostic D; Levic S Biomed Mater; 2016 Jun; 11(3):035015. PubMed ID: 27305176 [TBL] [Abstract][Full Text] [Related]
17. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Sultan S; Mathew AP Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572 [TBL] [Abstract][Full Text] [Related]
18. Nanocellulose-Based Inks-Effect of Alginate Content on the Water Absorption of 3D Printed Constructs. Espinosa E; Filgueira D; Rodríguez A; Chinga-Carrasco G Bioengineering (Basel); 2019 Jul; 6(3):. PubMed ID: 31366050 [TBL] [Abstract][Full Text] [Related]
19. Optimization of the Rheological Properties of Self-Assembled Tripeptide/Alginate/Cellulose Hydrogels for 3D Printing. Hernández-Sosa A; Ramírez-Jiménez RA; Rojo L; Boulmedais F; Aguilar MR; Criado-Gonzalez M; Hernández R Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683902 [TBL] [Abstract][Full Text] [Related]
20. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]