These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 33405573)
21. Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages. Liu XM; Wu SL; Chan YL; Chu PK; Chung CY; Chu CL; Yeung KW; Lu WW; Cheung KM; Luk KD J Biomed Mater Res A; 2007 Aug; 82(2):469-78. PubMed ID: 17295249 [TBL] [Abstract][Full Text] [Related]
22. Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Zou YH; Wang J; Cui LY; Zeng RC; Wang QZ; Han QX; Qiu J; Chen XB; Chen DC; Guan SK; Zheng YF Acta Biomater; 2019 Oct; 98():196-214. PubMed ID: 31154057 [TBL] [Abstract][Full Text] [Related]
23. Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface. Yang CH; Wang YT; Tsai WF; Ai CF; Lin MC; Huang HH Clin Oral Implants Res; 2011 Dec; 22(12):1426-32. PubMed ID: 21457349 [TBL] [Abstract][Full Text] [Related]
24. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs. Qiao S; Cao H; Zhao X; Lo H; Zhuang L; Gu Y; Shi J; Liu X; Lai H Int J Nanomedicine; 2015; 10():653-64. PubMed ID: 25609967 [TBL] [Abstract][Full Text] [Related]
25. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Chen M; Zhang E; Zhang L Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433 [TBL] [Abstract][Full Text] [Related]
26. Enhanced osteoblast functions and bactericidal effect of Ca and Ag dual-ion implanted surface layers on nanograined titanium alloys. Huang R; Han Y; Lu S J Mater Chem B; 2014 Jul; 2(28):4531-4543. PubMed ID: 32261554 [TBL] [Abstract][Full Text] [Related]
27. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings. Liu X; Tian A; You J; Zhang H; Wu L; Bai X; Lei Z; Shi X; Xue X; Wang H Int J Nanomedicine; 2016; 11():5743-5755. PubMed ID: 27843315 [TBL] [Abstract][Full Text] [Related]
28. Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Zhang W; Luo Y; Wang H; Jiang J; Pu S; Chu PK Acta Biomater; 2008 Nov; 4(6):2028-36. PubMed ID: 18586586 [TBL] [Abstract][Full Text] [Related]
29. Adjusting the Dose of Ag-Ion Implantation on TiN-Ag-Modified SLA-Ti Creates Different Micronanostructures: Implications on Bacteriostasis, Biocompatibility, and Osteogenesis in Dental Implants. Ma M; Zhao M; Ji R; Guo Y; Li D; Zeng S ACS Omega; 2023 Oct; 8(42):39269-39278. PubMed ID: 37901550 [TBL] [Abstract][Full Text] [Related]
30. The molecular mechanism for effects of TiN coating on NiTi alloy on endothelial cell function. Yang D; Lü X; Hong Y; Xi T; Zhang D Biomaterials; 2014 Aug; 35(24):6195-205. PubMed ID: 24818882 [TBL] [Abstract][Full Text] [Related]
31. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Cao H; Liu X; Meng F; Chu PK Biomaterials; 2011 Jan; 32(3):693-705. PubMed ID: 20970183 [TBL] [Abstract][Full Text] [Related]
32. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Hu H; Zhang W; Qiao Y; Jiang X; Liu X; Ding C Acta Biomater; 2012 Feb; 8(2):904-15. PubMed ID: 22023752 [TBL] [Abstract][Full Text] [Related]
33. The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application. Liu J; Zhang X; Wang H; Li F; Li M; Yang K; Zhang E Biomed Mater; 2014 Apr; 9(2):025013. PubMed ID: 24565798 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of a Zn-2Ag-1.8Au-0.2V Alloy for Absorbable Biocompatible Materials. Li P; Schille C; Schweizer E; Kimmerle-Müller E; Rupp F; Han X; Heiss A; Richter A; Legner C; Klotz UE; Geis-Gerstorfer J; Scheideler L Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861956 [TBL] [Abstract][Full Text] [Related]
35. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Wang G; Jin W; Qasim AM; Gao A; Peng X; Li W; Feng H; Chu PK Biomaterials; 2017 Apr; 124():25-34. PubMed ID: 28182874 [TBL] [Abstract][Full Text] [Related]
36. Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: proliferative response of osteoblasts and antibacterial effects. Fiedler J; Kolitsch A; Kleffner B; Henke D; Stenger S; Brenner RE Int J Artif Organs; 2011 Sep; 34(9):882-8. PubMed ID: 22094570 [TBL] [Abstract][Full Text] [Related]
37. Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: Microstructure, mechanical properties, corrosion behavior and antibacterial activities. Feng Y; Zhu S; Wang L; Chang L; Hou Y; Guan S Bioact Mater; 2018 Sep; 3(3):225-235. PubMed ID: 29744461 [TBL] [Abstract][Full Text] [Related]
38. Zn-incorporation with graphene oxide on Ti substrates surface to improve osteogenic activity and inhibit bacterial adhesion. Tao B; Chen M; Lin C; Lu L; Yuan Z; Liu J; Liao Q; Xia Z; Peng Z; Cai K J Biomed Mater Res A; 2019 Oct; 107(10):2310-2326. PubMed ID: 31161676 [TBL] [Abstract][Full Text] [Related]
39. A surface-engineered multifunctional TiO Lin Z; Wu S; Liu X; Qian S; Chu PK; Zheng Y; Cheung KMC; Zhao Y; Yeung KWK Acta Biomater; 2019 Nov; 99():495-513. PubMed ID: 31518705 [TBL] [Abstract][Full Text] [Related]
40. Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better. Cao H; Qiao Y; Liu X; Lu T; Cui T; Meng F; Chu PK Acta Biomater; 2013 Feb; 9(2):5100-10. PubMed ID: 23085265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]